Skip to main content

Advertisement

Log in

ADRA2A Germline Gene Polymorphism is Associated to the Severity, but not to the Risk, of Breast Cancer

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Breast cancer (BC) prognosis and risk were associated to obesity, metabolic syndrome and type 2 diabetes mellitus. Two Single Nucleotide Polymorphisms (SNPs) of the adrenergic receptor-2a gene (ADRA2A): rs1800544 and rs553668, have been associated to these metabolic disorders. We investigated these SNPs in BC risk and prognosis. A total of 102 BC patients and 102 healthy controls were included. The rs1800544 and rs553668 were determined by real-time PCR. Genotypes and haplotypes frequencies between patients and controls, and for different clinico-pathologic parameters were compared. We found a significant association of rs1800544 GG genotype with young age at diagnosis, premenopausal status, higher tumor size, metastasis in lymph nodes, advanced TNM stages and higher Nottingham Prognosis Indicator (NPI) (p < 0.05). There was no association between rs1800544 and SBR stages, Her2, ER and PR statuses and the molecular classification. The rs553668 AA genotype was associated to young age at diagnosis and premenopausal status (p < 0.05). The haplotype GA was associated to the early age of diagnosis (p = 0.03), and the haplotype GG to higher tumor size, lymph node involvement, advanced TNM stages and Her2 positive status (p < 0.05). There was no polymorphism or haplotype association with BC risk (p > 0.05). ADRA2A polymorphism is associated with indicators BC poor prognosis but not with BC susceptibility. This is the first report suggesting that ADRA2A germline gene polymorphism could represent a predictor factor for BC outcome. Further investigation of other ADRA2A polymorphisms in BC risk or prognosis are needed and may lead to a genotype-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide. IARC CancerBase 2012; No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. Available from: http://globocan.iarc.fr. Accessed on 2019th Dec 2014

  2. Pusztai L (2011) Anatomy and biology: two complementary sides of breast cancer prognostication. J Clin Oncol 29(33):4347–4348

    Article  PubMed  Google Scholar 

  3. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, et al. (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, et al. (2013) Personalizing the treatment of women with early breast cancer: highlights of the St gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol 24(9):2206–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang B, Beeghly-Fadiel A, Long J, Zheng W (2011) Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol 12(5):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rafiq S, Khan S, Tapper W, Collins A, Upstill-Goddard R, et al. (2014) A genome wide meta-analysis study for identification of common variation associated with breast cancer prognosis. PLoS One 9(12):e101488

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sapkota Y (2014) Germline DNA variations in breast cancer predisposition and prognosis: a systematic review of the literature. Cytogenet Genome Res 144(2):77–91

    Article  CAS  PubMed  Google Scholar 

  8. Ribelles N, Santonja A, Pajares B, Llacer C, Alba E (2014) The seed and soil hypothesis revisited: current state of knowledge of inherited genes on prognosis in breast cancer. Cancer Treat Rev 40(2):293–299

    Article  PubMed  Google Scholar 

  9. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, et al. (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science 238(4827):650–656

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman BB, Taylor P (2001) Neurotransmission: the autonomic and somatic motor nervous systems. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp. 115–153

    Google Scholar 

  11. Lario S, Calls J, Cases A, Oriola J, Torras A, et al. (1997) MspI identifies a biallelic polymorphism in the promoter region of the alpha 2A-adrenergic receptor gene. Clin Genet 51(2):129–130

    Article  CAS  PubMed  Google Scholar 

  12. Lima JJ, Feng H, Duckworth L, Wang J, Sylvester JE, et al. (2007) Association analyses of adrenergic receptor polymorphisms with obesity and metabolic alterations. Metabolism 56(6):757–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garenc C, Perusse L, Chagnon YC, Rankinen T, Gagnon J, et al. (2002) The alpha 2-adrenergic receptor gene and body fat content and distribution: the HERITAGE family study. Mol Med 8(2):88–94

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurnik D, Muszkat M, Li C, Sofowora GG, Friedman EA, et al. (2011) Genetic variations in the alpha(2A)-adrenoreceptor are associated with blood pressure response to the agonist dexmedetomidine. Circ Cardiovasc Genet 4(2):179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oppert JM, Tourville J, Chagnon M, Mauriege P, Dionne FT, et al. (1995) DNA polymorphisms in the alpha 2- and beta 2-adrenoceptor genes and regional fat distribution in humans: association and linkage studies. Obes Res 3(3):249–255

    Article  CAS  PubMed  Google Scholar 

  16. Ukkola O, Rankinen T, Weisnagel SJ, Sun G, Perusse L, et al. (2000) Interactions among the alpha2-, beta2-, and beta3-adrenergic receptor genes and obesity-related phenotypes in the Quebec family study. Metabolism 49(8):1063–1070

    Article  CAS  PubMed  Google Scholar 

  17. Rosengren AH, Jokubka R, Tojjar D, Granhall C, Hansson O, et al. (2010) Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 327(5962):217–220

    Article  CAS  PubMed  Google Scholar 

  18. Bo S, Cassader M, Cavallo-Perin P, Durazzo M, Rosato R, et al. (2012) The rs553668 polymorphism of the ADRA2A gene predicts the worsening of fasting glucose values in a cohort of subjects without diabetes. A population-based study. Diabet Med 29(4):549–552

    Article  CAS  PubMed  Google Scholar 

  19. Talmud PJ, Cooper JA, Gaunt T, Holmes MV, Shah S, et al. (2011) Variants of ADRA2A are associated with fasting glucose, blood pressure, body mass index and type 2 diabetes risk: meta-analysis of four prospective studies. Diabetologia 54(7):1710–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trentham-Dietz A, Newcomb PA, Storer BE, Longnecker MP, Baron J, et al. (1997) Body size and risk of breast cancer. Am J Epidemiol 145(11):1011–1019

    Article  CAS  PubMed  Google Scholar 

  21. van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, et al. (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152(6):514–527

    Article  PubMed  Google Scholar 

  22. Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, et al. (2003) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst 95(16):1218–1226

    Article  CAS  PubMed  Google Scholar 

  23. Sinicrope FA, Dannenberg AJ (2011) Obesity and breast cancer prognosis: weight of the evidence. J Clin Oncol 29(1):4–7

    Article  PubMed  Google Scholar 

  24. DeCensi A, Gennari A (2011) Insulin breast cancer connection: confirmatory data set the stage for better care. J Clin Oncol 29(1):7–10

    Article  PubMed  Google Scholar 

  25. Vazquez SM, Mladovan AG, Perez C, Bruzzone A, Baldi A, et al. (2006) Human breast cell lines exhibit functional alpha2-adrenoceptors. Cancer Chemother Pharmacol 58(1):50–61

    Article  CAS  PubMed  Google Scholar 

  26. Perez Pinero C, Bruzzone A, Sarappa MG, Castillo LF, Luthy IA (2012) Involvement of alpha2- and beta2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br J Pharmacol 166(2):721–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vazquez SM, Pignataro O, Luthy IA (1999) Alpha2-adrenergic effect on human breast cancer MCF-7 cells. Breast Cancer Res Treat 55(1):41–49

    Article  CAS  PubMed  Google Scholar 

  28. Chiesa IJ, Castillo LF, Luthy IA (2008) Contribution of alpha2-adrenoceptors to the mitogenic effect of catecholestrogen in human breast cancer MCF-7 cells. J Steroid Biochem Mol Biol 110(1–2):170–175

    Article  CAS  PubMed  Google Scholar 

  29. Bruzzone A, Pinero CP, Castillo LF, Sarappa MG, Rojas P, et al. (2008) Alpha2-adrenoceptor action on cell proliferation and mammary tumour growth in mice. Br J Pharmacol 155(4):494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  31. Todd JH, Dowle C, Williams MR, Elston CW, Ellis IO, et al. (1987) Confirmation of a prognostic index in primary breast cancer. Br J Cancer 56(4):489–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929

    Article  CAS  PubMed  Google Scholar 

  33. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, et al. (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):R65

    Article  PubMed  PubMed Central  Google Scholar 

  34. El Saghir NS, Seoud M, Khalil MK, Charafeddine M, Salem ZK, et al. (2006) Effects of young age at presentation on survival in breast cancer. BMC Cancer 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bharat A, Aft RL, Gao F, Margenthaler JA (2009) Patient and tumor characteristics associated with increased mortality in young women (< or =40 years) with breast cancer. J Surg Oncol 100(3):248–251

    Article  PubMed  Google Scholar 

  36. Anders CK, Johnson R, Litton J, Phillips M, Bleyer A (2009) Breast cancer before age 40 years. Semin Oncol 36(3):237–249

    Article  PubMed  PubMed Central  Google Scholar 

  37. Le Doussal V, Tubiana-Hulin M, Friedman S, Hacene K, Spyratos F, et al. (1989) Prognostic value of histologic grade nuclear components of scarff-bloom-Richardson (SBR). an improved score modification based on a multivariate analysis of 1262 invasive ductal breast carcinomas. Cancer 64(9):1914–1921

    Article  PubMed  Google Scholar 

  38. Osborne CK, Yochmowitz MG, Knight 3rd WA, McGuire WL (1980) The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 1980 46(12 Suppl):2884–2888

    CAS  Google Scholar 

  39. McGuire WL, Osborne CK, Clark GM, Knight 3rd WA (1982) Steroid hormone receptors and carcinoma of the breast. Am J Phys 243(2):E99–102

    CAS  Google Scholar 

  40. Clark GM, McGuire WL (1988) Steroid receptors and other prognostic factors in primary breast cancer. Semin Oncol 15(2 Suppl 1):20–25

    CAS  PubMed  Google Scholar 

  41. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, et al. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  42. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, et al. (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 27(8):1168–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boyle DP, McCourt CM, Matchett KB, Salto-Tellez M (2013) Molecular and clinicopathological markers of prognosis in breast cancer. Expert Rev Mol Diagn 13(5):481–498

    Article  CAS  PubMed  Google Scholar 

  45. Small KM, Brown KM, Seman CA, Theiss CT, Liggett SB (2006) Complex haplotypes derived from noncoding polymorphisms of the intronless alpha2A-adrenergic gene diversify receptor expression. Proc Natl Acad Sci U S A 103(14):5472–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, et al. (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    Article  CAS  PubMed  Google Scholar 

  47. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, et al. (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527

    Article  CAS  PubMed  Google Scholar 

  48. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, et al. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 100(18):10393–10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shkurnikov MY, Galatenko VV, Lebedev AE, Podol’skii VE, Tonevitskii EA, et al. (2014) On statistical relationship between ADRA2A expression and the risk of breast cancer relapse. Bull Exp Biol Med 157(4):454–458

    Article  CAS  PubMed  Google Scholar 

  50. Du Y, Zhou L, Wang Y, Yan T, Jiang Y, et al. (2014) Association of alpha2a and beta2 adrenoceptor expression with clinical outcome in breast cancer. Curr Med Res Opin 30(7):1337–1344

    Article  CAS  PubMed  Google Scholar 

  51. Lutgendorf SK, Sood AK, Antoni MH (2010) Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol 28(26):4094–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Docherty JR (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol 361(1):1–15

    Article  CAS  PubMed  Google Scholar 

  53. Giessler C, Wangemann T, Silber RE, Dhein S, Brodde OE (2002) Noradrenaline-induced contraction of human saphenous vein and human internal mammary artery: involvement of different alpha-adrenoceptor subtypes. Naunyn Schmiedeberg's Arch Pharmacol 366(2):104–109

    Article  CAS  Google Scholar 

  54. Bruckmaier RM, Wellnitz O, Blum JW (1997) Inhibition of milk ejection in cows by oxytocin receptor blockade, alpha-adrenergic receptor stimulation and in unfamiliar surroundings. J Dairy Res 64(3):315–325

    Article  CAS  PubMed  Google Scholar 

  55. Su F, Ouyang N, Zhu P, Jia W, Gong C, et al. (2005) Psychological stress induces chemoresistance in breast cancer by upregulating mdr1. Biochem Biophys Res Commun 329(3):888–897

    Article  CAS  PubMed  Google Scholar 

  56. Flint MS, Kim G, Hood BL, Bateman NW, Stewart NA, et al. (2009) Stress hormones mediate drug resistance to paclitaxel in human breast cancer cells through a CDK-1-dependent pathway. Psychoneuroendocrinology 34(10):1533–1541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the patients and control subjects for their participation.

Authors' Contributions

GB conceived of the study, obtained financial support for the project, carried out genotyping, carried out the statistical analyses, managed the project, coordinated data collection and wrote the manuscript. BK carried out genotyping, retrieved the clinical data and wrote the manuscript. WB and KH retrieved the clinical data. WT and MS carried out genotyping. HB co-ordinated data collection.

All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghania Belaaloui.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in this study are in accordance with the ethical standards of the Thematic Agency for Research in Health Sciences (ATRSS, ex-ANDRS) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Funding

This work was funded by contract No. 71/ANDRS/2011, from the Ministry of Higher Education and Scientific Research in Algeria.

Additional information

Batoul Kaabi and Ghania Belaaloui contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaabi, B., Belaaloui, G., Benbrahim, W. et al. ADRA2A Germline Gene Polymorphism is Associated to the Severity, but not to the Risk, of Breast Cancer. Pathol. Oncol. Res. 22, 357–365 (2016). https://doi.org/10.1007/s12253-015-0010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-0010-0

Keywords

Navigation