Skip to main content

Advertisement

Log in

Detection of congenital cytomegalovirus in newborns using nucleic acid amplification techniques and its public health implications

  • Review
  • Published:
Virologica Sinica

Abstract

Human cytomegalovirus (HCMV), a herpesvirus, is an important human pathogen that causes asymptomatic infections in healthy or immunocompetent individuals but can lead to severe and potentially life-threatening complications in immune-immature individuals such as neonates or immune-compromised patients such as organ-transplant recipients and HIV-positive individuals. Congenital HCMV infection represents a significant public health issue and poses substantial healthcare and economic burden to society. This virus causes the most common viral congenital infection worldwide, and is the leading non-genetic cause of sensorineural hearing loss in children in developed countries. Congenital HCMV infection is believed to fulfill the criteria of the American College of Medical Genetics to be considered as a condition targeted for a newborn screening program. This is because congenital HCMV infection can be identified during a time (within 2 days after birth) at which it would not ordinarily be detected clinically, and there are demonstrated benefits of early detection, timely intervention, and efficacious treatment of the condition. Recent progresses in developing polymerase chain reaction-based approaches to detect HCMV in samples obtained from newborns have generated much excitement in the field. In this review, we highlight the recent progress in diagnostic techniques that could potentially be used for the detection of HCMV infection in neonates and its direct implications in public health settings for diagnosing congenital HCMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderholm KM, Bierle CJ, Schleiss MR. 2016. Cytomegalovirus Vaccines: Current Status and Future Prospects. Drugs, 76: 1625–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker M. 2012. Digital PCR hits its stride. Nat Methods, 9: 541–544.

    Article  CAS  Google Scholar 

  • Balcarek KB, Warren W, Smith RJ, Lyon MD, Pass RF. 1993. Neonatal screening for congenital cytomegalovirus infection by detection of virus in saliva. J Infect Dis, 167: 1433–1436.

    Article  CAS  PubMed  Google Scholar 

  • Barbi M, Binda S, Primache V, Caroppo S, Dido P, Guidotti P, Corbetta C, Melotti D. 2000. Cytomegalovirus DNA detection in Guthrie cards: a powerful tool for diagnosing congenital infection. J Clin Virol, 17: 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Barry PA. 2015. Exploiting viral natural history for vaccine development. Med Microbiol Immunol, 204: 255–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belec L, Brogan TV. 2011. Real-time PCR-based testing of saliva for cytomegalovirus at birth. Expert Rev Anti Infect Ther, 9: 1119–1124.

    Article  PubMed  Google Scholar 

  • Boeckh M, Huang M, Ferrenberg J, Stevens-Ayers T, Stensland L, Nichols WG, Corey L. 2004. Optimization of quantitative detection of cytomegalovirus DNA in plasma by real-time PCR. J Clin Microbiol, 42: 1142–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boppana SB, Fowler KB. 2007. Persistence in the population: epidemiology and transmisson. In: Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Arvin A, Campadelli-Fiume G, Mocarski E, et al. eds. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boppana SB, Rivera LB, Fowler KB, Mach M, Britt WJ. 2001. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med, 344: 1366–1371.

    Article  CAS  PubMed  Google Scholar 

  • Boppana SB, Ross SA, Novak Z, Shimamura M, Tolan RW, Jr., Palmer AL, Ahmed A, Michaels MG, Sanchez PJ, Bernstein DI, Britt WJ, Fowler KB, National Institute on D, Other Communication Disorders CMV, Hearing Multicenter Screening S 2010. Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection. JAMA, 303: 1375–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boppana SB, Ross SA, Shimamura M, Palmer AL, Ahmed A, Michaels MG, Sanchez PJ, Bernstein DI, Tolan RW, Jr., Novak Z, Chowdhury N, Britt WJ, Fowler KB, National Institute on D, Other Communication Disorders CS 2011. Saliva polymerasechain-reaction assay for cytomegalovirus screening in newborns. N Engl J Med, 364: 2111–2118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford RD, Cloud G, Lakeman AD, Boppana S, Kimberlin DW, Jacobs R, Demmler G, Sanchez P, Britt W, Soong SJ, Whitley RJ, National Institute of A, Infectious Diseases Collaborative Antiviral Study G. 2005. Detection of cytomegalovirus (CMV) DNA by polymerase chain reaction is associated with hearing loss in newborns with symptomatic congenital CMV infection involving the central nervous system. J Infect Dis, 191: 227–233.

  • Britt WJ. 1999. Congenital cytomegalovirus infection. In: Sexually transmitted diseases and adverse outcomes of pregnancy, Hitchcock H, MacKay T, and Wasserheit JN eds.). Washington D.C.: ASM Press, pp. 269–281.

    Google Scholar 

  • Britt WJ. 2017. Congenital Human Cytomegalovirus Infection and the Enigma of Maternal Immunity. J Virol, 91. pii: e02392–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bustin SA. 2005. Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn, 5: 493–498.

    Article  CAS  PubMed  Google Scholar 

  • Cannon MJ, Schmid DS, Hyde TB. 2010. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol, 20: 202–213.

    Article  PubMed  Google Scholar 

  • Dahle AJ, Fowler KB, Wright JD, Boppana SB, Britt WJ, Pass RF. 2000. Longitudinal investigation of hearing disorders in children with congenital cytomegalovirus. J Am Acad Audiol, 11: 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Demmler GJ. 1991. Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev Infect Dis, 13: 315–329.

    CAS  PubMed  Google Scholar 

  • Dingle TC, Sedlak RH, Cook L, Jerome KR. 2013. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem, 59: 1670–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enders G, Daiminger A, Bader U, Exler S, Enders M. 2011. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J Clin Virol, 52: 244–246.

    Article  PubMed  Google Scholar 

  • Fowler KB, McCollister FP, Dahle AJ, Boppana S, Britt WJ, Pass RF. 1997. Progressive and fluctuating sensorineural hearing loss in children with asymptomatic congenital cytomegalovirus infection. J Pediatr, 130: 624–630.

    Article  CAS  PubMed  Google Scholar 

  • Fu TM, An Z, Wang D. 2014. Progress on pursuit of human cytomegalovirus vaccines for prevention of congenital infection and disease. Vaccine, 32: 2525–2533.

    Article  CAS  PubMed  Google Scholar 

  • Goderis J, Keymeulen A, Smets K, Van Hoecke H, De Leenheer E, Boudewyns A, Desloovere C, Kuhweide R, Muylle M, Royackers L, Schatteman I, Dhooge I. 2016. Hearing in Children with Congenital Cytomegalovirus Infection: Results of a Longitudinal Study. J Pediatr, 172: 110–115.e112.

    Article  PubMed  Google Scholar 

  • Gohring K, Dietz K, Hartleif S, Jahn G, Hamprecht K. 2010. Influence of different extraction methods and PCR techniques on the sensitivity of HCMV-DNA detection in dried blood spot (DBS) filter cards. J Clin Virol, 48: 278–281.

    Article  PubMed  CAS  Google Scholar 

  • Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M. 2013. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods, 10: 1003–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue N, Koyano S. 2008. Evaluation of screening tests for congenital cytomegalovirus infection. Pediatr Infect Dis J, 27: 182–184.

    Article  PubMed  Google Scholar 

  • Kenneson A, Cannon MJ. 2007. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol, 17: 253–276.

    Article  PubMed  Google Scholar 

  • Kharrazi M, Hyde T, Young S, Amin MM, Cannon MJ, Dollard SC. 2010. Use of screening dried blood spots for estimation of prevalence, risk factors, and birth outcomes of congenital cytomegalovirus infection. J Pediatr, 157: 191–197.

    Article  PubMed  Google Scholar 

  • Lanari M, Lazzarotto T, Venturi V, Papa I, Gabrielli L, Guerra B, Landini MP, Faldella G. 2006. Neonatal cytomegalovirus blood load and risk of sequelae in symptomatic and asymptomatic congenitally infected newborns. Pediatrics, 117: e76–e83.

    Article  PubMed  Google Scholar 

  • Leruez-Ville M, Vauloup-Fellous C, Couderc S, Parat S, Castel C, Avettand-Fenoel V, Guilleminot T, Grangeot-Keros L, Ville Y, Grabar S, Magny JF. 2011. Prospective identification of congenital cytomegalovirus infection in newborns using real-time polymerase chain reaction assays in dried blood spots. Clin Infect Dis, 52: 575–581.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Zhou ZH. 2007. Comparative virion structures of human herpesviruses. In: Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Arvin A, Campadelli-Fiume G, Mocarski E, et al. eds. Cambridge: Cambridge University Press.

    Google Scholar 

  • Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. 2013. The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev, 26: 86–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsico C, Kimberlin DW. 2017. Congenital Cytomegalovirus infection: advances and challenges in diagnosis, prevention and treatment. Ital J Pediatr, 43: 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mocarski ES, Shenk T, Griffiths PD, Pass RF. 2013. Cytomegaloviruses. In: Fields Virology, Knipe DM, Howley PM, Cohen JI, et al. eds.). Philadelphia, Pa.: Lippincott-William & Wilkins, pp. 1960–2014.

    Google Scholar 

  • Morton CC, Nance WE. 2006. Newborn hearing screening—a silent revolution. N Engl J Med, 354: 2151–2164.

    Article  CAS  PubMed  Google Scholar 

  • Nozawa N, Koyano S, Yamamoto Y, Inami Y, Kurane I, Inoue N. 2007. Real-time PCR assay using specimens on filter disks as a template for detection of cytomegalovirus in urine. J Clin Microbiol, 45: 1305–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pass RF, Fowler KB, Boppana SB, Britt WJ, Stagno S. 2006. Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol, 35: 216–220.

    Article  PubMed  Google Scholar 

  • Plachter B. 2016. Prospects of a vaccine for the prevention of congenital cytomegalovirus disease. Med Microbiol Immunol, 205: 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Revello MG, Gerna G. 2002. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev, 15: 680–715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinshaw HM. 1995. Early intervention for hearing impairment: differences in the timing of communicative and linguistic development. Br J Audiol, 29: 315–334.

    Article  CAS  PubMed  Google Scholar 

  • Roizman B, Knipe DM, Whitley RJ. 2013. Herpes Simplex Viruses. In: Fields Virology, Knipe DM, Howley PM, Cohen JI, et al. eds.). Philadelphia, Pa.: Lippincott-William & Wilkins, pp. 1823–1897.

    Google Scholar 

  • Ross SA, Ahmed A, Palmer AL, Michaels MG, Sanchez PJ, Bernstein DI, Tolan RW, Jr., Novak Z, Chowdhury N, Fowler KB, Boppana SB, National Institute on D, Other Communication Disorders CS 2014. Detection of congenital cytomegalovirus infection by real-time polymerase chain reaction analysis of saliva or urine specimens. J Infect Dis, 210: 1415–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross SA, Ahmed A, Palmer AL, Michaels MG, Sanchez PJ, Stewart A, Bernstein DI, Feja K, Fowler KB, Boppana SB, Cmv, Hearing Multicenter Screening Study G. 2017. Newborn Dried Blood Spot Polymerase Chain Reaction to Identify Infants with Congenital Cytomegalovirus-Associated Sensorineural Hearing Loss. J Pediatr, 184: 57–61. e1.

  • Ross SA, Ahmed A, Palmer AL, Michaels MG, Sanchez PJ, Stewart A, Bernstein DI, Feja K, Novak Z, Fowler KB, Boppana SB, National Institute on D, Other Communication Disorders CS. 2015. Urine Collection Method for the Diagnosis of Congenital Cytomegalovirus Infection. Pediatr Infect Dis J, 34: 903–905.

  • Sedlak RH, Jerome KR. 2013. Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis, 75: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Soetens O, Vauloup-Fellous C, Foulon I, Dubreuil P, De Saeger B, Grangeot-Keros L, Naessens A. 2008. Evaluation of different cytomegalovirus (CMV) DNA PCR protocols for analysis of dried blood spots from consecutive cases of neonates with congenital CMV infections. J Clin Microbiol, 46: 943–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, Spina CA, Woelk CH, Richman DD. 2013. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One, 8: e55943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton KR, Durch JS, Lawrence RS (eds). 2000. Committee to study priorities for vaccine development, Division of Health Promotion and Disease Prevention, Institute of Medicine. Vaccine for the 21st century: a tool for decision making National Academies Press, Washington DC.

  • Sweetman L, Millington DS, Therrell BL, Hannon WH, Popovich B, Watson MS, Mann MY, Lloyd-Puryear MA, van Dyck PC. 2006. Naming and counting disorders (conditions) included in newborn screening panels. Pediatrics, 117: S308–314.

    Article  PubMed  Google Scholar 

  • Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. 1992. Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 13: 444–449.

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW. 1999. Digital PCR. Proc Natl Acad Sci U S A, 96: 9236–9241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waggoner J, Ho DY, Libiran P, Pinsky BA. 2012. Clinical significance of low cytomegalovirus DNA levels in human plasma. J Clin Microbiol, 50: 2378–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter S, Atkinson C, Sharland M, Rice P, Raglan E, Emery VC, Griffiths PD. 2008. Congenital cytomegalovirus: association between dried blood spot viral load and hearing loss. Arch Dis Child Fetal Neonatal Ed, 93: F280–285.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang X, Bialek S, Cannon MJ. 2011. Attribution of congenital cytomegalovirus infection to primary versus nonprimary maternal infection. Clin Infect Dis, 52: e11–e13.

    Article  PubMed  Google Scholar 

  • Wang D, Fu TM. 2014. Progress on human cytomegalovirus vaccines for prevention of congenital infection and disease. Curr Opin Virol, 6: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto AY, Mussi-Pinhata MM, Marin LJ, Brito RM, Oliveira PF, Coelho TB. 2006. Is saliva as reliable as urine for detection of cytomegalovirus DNA for neonatal screening of congenital CMV infection?. J Clin Virol, 36: 228–230.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto AY, Mussi-Pinhata MM, Pinto PC, Figueiredo LT, Jorge SM. 2001. Usefulness of blood and urine samples collected on filter paper in detecting cytomegalovirus by the polymerase chain reaction technique. J Virol Methods, 97: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga-Itano C. 1999. Benefits of early intervention for children with hearing loss. Otolaryngol Clin North Am, 32: 1089–1102.

    Article  CAS  PubMed  Google Scholar 

  • Young NM, Reilly BK, Burke L. 2011. Limitations of universal newborn hearing screening in early identification of pediatric cochlear implant candidates. Arch Otolaryngol Head Neck Surg, 137: 230–234.

    Article  PubMed  Google Scholar 

  • Yow MD, Williamson DW, Leeds LJ, Thompson P, Woodward RM, Walmus BF, Lester JW, Six HR, Griffiths PD. 1988. Epidemiologic characteristics of cytomegalovirus infection in mothers and their infants. Am J Obstet Gynecol, 158: 1189–1195.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Phong Trang, Hao Gong, Marco Paliza-Carre, Gia-Phong Vu, and Ting Wang for critical comments, insight discussions, and editorial assistance. This research has been supported by grants from Guangdong Innovative and Entrepreneurial Research Team Program (No. 2014 ZT05S136), the National Mega Project on Major Infectious Disease Prevention (2012ZX10002006-003 and 2012 ZX10004-207), and NIH (RO1-AI041927, RO1-AI091536, RO1-DE023935, and RO1-DE025462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenyong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Hai, R. & Liu, F. Detection of congenital cytomegalovirus in newborns using nucleic acid amplification techniques and its public health implications. Virol. Sin. 32, 376–386 (2017). https://doi.org/10.1007/s12250-017-4055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-017-4055-y

Keywords

Navigation