Skip to main content

Advertisement

Log in

The nucleocytoplasmic transport of viral proteins

  • Published:
Virologica Sinica

Abstract

Molecules can enter the nucleus by passive diffusion or active transport mechanisms, depending on their size. Small molecules up to size of 50–60 kDa or less than 10 nm in diameter can diffuse passively through the nuclear pore complex (NPC), while most proteins are transported by energy driven transport mechanisms. Active transport of viral proteins is mediated by nuclear localization signals (NLS), which were first identified in Simian Virus 40 large T antigen and had subsequently been identified in a large number of viral proteins. Usually they contain short stretches of lysine or arginine residues. These signals are recognized by the importin super-family (importin α and β) proteins that mediate the transport across the nuclear envelope through Ran-GTP. In contrast, only one class of the leucine-rich nuclear export signal (NES) on viral proteins is known at present. Chromosome region maintenance 1 (CRM1) protein mediates nuclear export of hundreds of viral proteins through the recognition of the leucine-rich NES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen T D, Cronshaw J M, Bagley S, et al. 2000. The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci, 113(Pt 10): 1651–1659.

    CAS  PubMed  Google Scholar 

  2. Bayliss R, Littlewood T, Stewart M. 2000. Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell, 102: 99–108.

    Article  CAS  PubMed  Google Scholar 

  3. Boulo S, Akarsu H, Ruigrok R W, et al. 2007. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res, 124: 12–21.

    Article  CAS  PubMed  Google Scholar 

  4. Bremner K H, Seymour L W, Pouton C W. 2001. Harnessing nuclear localization pathways for transgene delivery. Curr Opin Mol Ther, 3: 170–177.

    CAS  PubMed  Google Scholar 

  5. Chen T, Brownawell A M, Macara I G. 2004. Nucleocytoplasmic shuttling of JAZ, a new cargo protein for exportin-5. Mol Cell Biol, 24: 6608–6619.

    Article  CAS  PubMed  Google Scholar 

  6. Conti E, Muller C W, Stewart M. 2006. Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol, 16: 237–244.

    Article  CAS  PubMed  Google Scholar 

  7. Dingwall C, Robbins J, Dilworth S M, et al. 1988. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol, 107: 841–849.

    Article  CAS  PubMed  Google Scholar 

  8. Dong X, Biswas A, Suel K E, et al. 2009. Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature, 458: 1136–1141.

    Article  CAS  PubMed  Google Scholar 

  9. Eulalio A, Nunes-Correia I, Carvalho A L, et al. 2004. Two African swine fever virus proteins derived from a common precursor exhibit different nucleocytoplasmic transport activities. J Virol, 78: 9731–9739.

    Article  CAS  PubMed  Google Scholar 

  10. Fahrenkrog B, Aebi U. 2002. The vertebrate nuclear pore complex: from structure to function. Results Probl Cell Differ, 35: 25–48.

    CAS  PubMed  Google Scholar 

  11. Fornerod M, Ohno M, Yoshida M, et al. 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell, 90: 1051–1060.

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda M, Asano S, Nakamura T, et al. 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature, 390: 308–311.

    Article  CAS  PubMed  Google Scholar 

  13. Guo H, Ding Q, Lin F, et al. 2009. Characterization of the Nuclear and Nucleolar Localization Signals of Bovine Herpesvirus-1 Infected Cell Protein 27. Virus Res, 145: 312–320.

    Article  CAS  PubMed  Google Scholar 

  14. Hodel M R, Corbett A H, Hodel A E. 2001. Dissection of a nuclear localization signal. J Biol Chem, 276: 1317–1325.

    Article  CAS  PubMed  Google Scholar 

  15. Kalab P, Weis K, Heald R. 2002. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science, 295: 2452–2456.

    Article  CAS  PubMed  Google Scholar 

  16. Kalderon D, Richardson W D, Markham A F, et al. 1984. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature, 311: 33–38.

    Article  CAS  PubMed  Google Scholar 

  17. Kosugi S, Hasebe M, Matsumura N, et al. 2009. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem, 284: 478–485.

    Article  CAS  PubMed  Google Scholar 

  18. Kudo N, Matsumori N, Taoka H, et al. 1999. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA, 96: 9112–9117.

    Article  CAS  PubMed  Google Scholar 

  19. la Cour T, Kiemer L, Molgaard A, et al. 2004. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel, 17: 527–536.

    Article  PubMed  Google Scholar 

  20. Lange A, Mills R E, Lange C J, et al. 2007. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem, 282: 5101–5105.

    Article  CAS  PubMed  Google Scholar 

  21. Lee B J, Cansizoglu A E, Suel K E, et al. 2006. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell, 126: 543–558.

    Article  CAS  PubMed  Google Scholar 

  22. Lee C H, Chang S C, Wu C H, et al. 2001. A novel chromosome region maintenance 1-independent nuclear export signal of the large form of hepatitis delta antigen that is required for the viral assembly. J Biol Chem, 276: 8142–8148.

    Article  CAS  PubMed  Google Scholar 

  23. Lischka P, Rosorius O, Trommer E, et al. 2001. A novel transferable nuclear export signal mediates CRM1-independent nucleocytoplasmic shuttling of the human cytomegalovirus transactivator protein pUL69. EMBO J, 20: 7271–7283.

    Article  CAS  PubMed  Google Scholar 

  24. Michael W M, Choi M, Dreyfuss G. 1995. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell, 83: 415–422.

    Article  CAS  PubMed  Google Scholar 

  25. Miyamoto Y, Imamoto N, Sekimoto T, et al. 1997. Differential modes of nuclear localization signal (NLS) recognition by three distinct classes of NLS receptors. J Biol Chem, 272: 26375–26381.

    Article  CAS  PubMed  Google Scholar 

  26. Nair R, Carter P, Rost B. 2003. NLSdb: database of nuclear localization signals. Nucleic Acids Res, 31: 397–399.

    Article  CAS  PubMed  Google Scholar 

  27. Ossareh-Nazari B, Bachelerie F, Dargemont C. 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science, 278: 141–144.

    Article  CAS  PubMed  Google Scholar 

  28. Ossareh-Nazari B, Dargemont C. 1999. Domains of Crm1 involved in the formation of the Crm1, RanGTP, and leucine-rich nuclear export sequences trimeric complex. Exp Cell Res, 252: 236–241.

    Article  CAS  PubMed  Google Scholar 

  29. Peters R. 2006. Introduction to nucleocytoplasmic transport: molecules and mechanisms. Methods Mol Biol, 322: 235–258.

    Article  CAS  PubMed  Google Scholar 

  30. Quimby B B, Dasso M. 2003. The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol, 15: 338–344.

    Article  CAS  PubMed  Google Scholar 

  31. Roberts B L, Richardson W D, Smith A E. 1987. The effect of protein context on nuclear location signal function. Cell, 50: 465–475.

    Article  CAS  PubMed  Google Scholar 

  32. Rowland R R, Yoo D. 2003. Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res, 95: 23–33.

    Article  CAS  PubMed  Google Scholar 

  33. Siomi H, Dreyfuss G. 1995. A nuclear localization domain in the hnRNP A1 protein. J Cell Biol, 129: 551–560.

    Article  CAS  PubMed  Google Scholar 

  34. Smith A E, Slepchenko B M, Schaff J C, et al. 2002. Systems analysis of Ran transport. Science, 295: 488–491.

    Article  CAS  PubMed  Google Scholar 

  35. Suel K E, Chook Y M. 2009. Kap104p imports the PY-NLS-containing transcription factor Tfg2p into the nucleus. J Biol Chem, 284:15416–15424.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng C, Brownlie R, Babiuk L A, et al. 2004. Characterization of nuclear localization and export signals of the major tegument protein VP8 of bovine herpesvirus-1. Virology, 324: 327–339.

    Article  CAS  PubMed  Google Scholar 

  37. Zheng C, Brownlie R, Babiuk L A, et al. 2005. Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 VP22. J Virol, 79: 11864–11872.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Zheng.

Additional information

Foundation items: The Startup Fund of the Hundred Talents Program of the Chinese Academy of Science (20071010-141); National Natural Science Foundation of China (30870120); Open Research Fund Program of the State Key Laboratory of Virology of China (2007003, 2009007); Hubei Province Natural Science Foundation of Innovation Groups Project (2008CDA013).

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Q., Zhao, L., Guo, H. et al. The nucleocytoplasmic transport of viral proteins. Virol. Sin. 25, 79–85 (2010). https://doi.org/10.1007/s12250-010-3099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-010-3099-z

Key words

Navigation