Skip to main content
Log in

Loss-in-Weight Feeding Trials Case Study: Pharmaceutical Formulation

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

This article presents a case study of a continuous feeding strategy for five pharmaceutical components (active pharmaceutical ingredient (API), Prosolv HD90, crospovidone, magnesium stearate, and colloidal silicon dioxide), for the purpose of developing a direct compression continuous manufacturing system. Feeding options for each of these five powders were examined. Prosolv HD90 and crospovidone easily resulted in optimal feeding conditions, whereas the remaining powders in the formulation presented some challenges. The API displayed flow issues, leading to clogging of the screen with small openings. Magnesium stearate exhibited shear sensitivity; increasing shear of the powder due to hopper agitation resulted in drifting feeding performance. Colloidal silicon dioxide exhibited electrostatic issues that render most tooling options unsuitable for steady operation. All of these difficulties were resolved using the methods described in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Plumb K. Continuous processing in the pharmaceutical industry: changing the mind set. Chem Eng Res Des. 2005;83(6):730–8.

    Article  CAS  Google Scholar 

  2. FDA. Guidance for Industry: PAT—a framework for innovative pharmaceutical development, manufacturing and quality assurance. Food and Drug Administration, 2004.

  3. Wilburn KR. The business case for continuous manufacturing of pharmaceuticals. Thesis, Massachusetts Institute of Technology, 2010.

  4. Leuenberger H. New trends in the production of pharmaceutical granules: batch versus continuous processing. Eur J Pharm Biopharm. 2001;52(3):289–96.

    Article  CAS  PubMed  Google Scholar 

  5. Betz G, Junker-Bürgin P, Leuenberger H. Batch and continuous processing in the production of pharmaceutical granules. Pharm Dev Technol. 2003;8(3):289–97.

    Article  CAS  PubMed  Google Scholar 

  6. Buchholz S. Future manufacturing approaches in the chemical and pharmaceutical industry. Chem Eng Process Process Intensif. 2010;49(10):993–5.

    Article  CAS  Google Scholar 

  7. Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind Eng Chem Res. 2011;50(17):10083–92.

    Article  CAS  Google Scholar 

  8. Singh R, Boukouvala F, Jayjock E, Ramachandran R, Ierapetritou M, Muzzio F. Flexible multipurpose continuous processing of pharmaceutical tablet manufacturing process. GMP News Eur. Compliance Acad. ECE, 2012.

  9. Singh R, Ierapetritou M, Ramachandran R. An engineering study on the enhanced control and operation of continuous manufacturing of pharmaceutical tablets via roller compaction. Int J Pharm. 2012;438(1–2):307–26.

    Article  CAS  PubMed  Google Scholar 

  10. Singh R, Ierapetritou M, Ramachandran R. System-wide hybrid MPC–PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction. Eur J Pharm Biopharm.

  11. Singh R, Ierapetritou M, Ramachandran R. Hybrid advanced control of flexible multipurpose continuous tablet manufacturing process via direct compaction. In: Computer Aided Chemical Engineering vol. 32, Andrzej Kraslawski and Ilkka Turunen, Ed. Elsevier, 2013;757–762.

  12. Weinekotter R, Reh L. Continuous mixing of fine particles. Part Part Syst Charact. 1995;12(1):46–53.

    Article  Google Scholar 

  13. Danckwerts PV. Continuous flow systems: distribution of residence times. Chem Eng Sci. 1953;2(1):1–13.

    Article  CAS  Google Scholar 

  14. Williams JC, Rahman MA. Prediction of the performance of continuous mixers for particulate solids using residence time distributions: part II. Experimental. Powder Technol. 1972;5(5):307–16.

    Article  CAS  Google Scholar 

  15. Pernenkil L, Cooney CL. A review on the continuous blending of powders. Chem Eng Sci. 2006;61(2):720–42.

    Article  CAS  Google Scholar 

  16. Singh R, Boukouvala F, Jayjock E, Ramachandran R, Ierapetritou M, Muzzio F. Flexible multipurpose continuous processing. Pharm Process. 2012;27(6):22–5.

    Google Scholar 

  17. Dai J, Cui H, Grace JR. Biomass feeding for thermochemical reactors. Prog Energy Combust Sci. 2012;38(5):716–36.

    Article  CAS  Google Scholar 

  18. Yang S, Evans JRG. Metering and dispensing of powder; the quest for new solid freeforming techniques. Powder Technol. 2007;178(1):56–72.

    Article  CAS  Google Scholar 

  19. Dai J, Grace JR. A model for biomass screw feeding. Powder Technol. 2008;186(1):40–55.

    Article  CAS  Google Scholar 

  20. Myhre JB, Ludescher S. Apparatus and method for controlling flow rate in vibratory feeders. 5341307, 1994.

  21. Homer III JC, Walsh JR, Ratcliffe DP. System for checking the calibration of gravimetric feeders and belt scales. 5686653, 1997.

  22. Somsuk N, Wessapan T, Teekasap S. Design and development of a rotary airlock valve for using in continuous pyrolysis process to improve performance. Adv Mater Res. 2011;383–390:7148–54.

    Article  Google Scholar 

  23. K-Tron. K-Tron operating instruction: KSU-II/KCM-KD operation for LWF, WBF, PID, SFM and VOL applications. Pitman, NJ: K-Tron 2006.

  24. Hopkins M. LOSS in weight feeder systems. Meas Control. 2006;39(8):237–40.

    Article  Google Scholar 

  25. Kehlenbeck V, Sommer K. Possibilities to improve the short-term dosing constancy of volumetric feeders. Powder Technol. 2003;138(1):51–6.

    Article  CAS  Google Scholar 

  26. Tardos G, Lu Q. Precision dosing of powders by vibratory and screw feeders: an experimental study. Adv Powder Technol. 1996;7(1):51–8.

    Article  CAS  Google Scholar 

  27. Engisch WE, Muzzio FJ. Method for characterization of loss-in-weight feeder equipment. Powder Technol. 2012;228:395–403.

    Article  CAS  Google Scholar 

  28. Gao Y, Muzzio F, Ierapetritou M. Characterization of feeder effects on continuous solid mixing using fourier series analysis. AICHE J. 2011;57(5):1144–53.

    Article  CAS  Google Scholar 

  29. Freeman R, Fu X. Characterisation of powder bulk, dynamic flow and shear properties in relation to die filling. Powder Metall. 2008;51(3):196–201.

    Article  CAS  Google Scholar 

  30. Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders—a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174(1–2):25–33.

    Article  CAS  Google Scholar 

  31. Vasilenko A, Glasser BJ, Muzzio FJ. Shear and flow behavior of pharmaceutical blends—method comparison study. Powder Technol. 2011;208(3):628–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Engisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engisch, W.E., Muzzio, F.J. Loss-in-Weight Feeding Trials Case Study: Pharmaceutical Formulation. J Pharm Innov 10, 56–75 (2015). https://doi.org/10.1007/s12247-014-9206-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-014-9206-1

Keywords

Navigation