Skip to main content
Log in

Enhancement of Solubility and Dissolution Rate of Loratadine with Gelucire 50/13

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The objective of the current investigation was to enhance the solubility and dissolution rate of loratadine using solid dispersions (SDs) with Gelucire 50/13. SDs of loratadine using Gelucire 50/13 as carrier were prepared by the solvent evaporation method, characterized for drug content, dissolution behavior, and physicochemical characteristics by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) studies. At 10 % concentration of Gelucire 50/13, the increase in solubility was around 100-fold compared with pure drug. The solubility of loratadine in the presence of Gelucire 50/13 in water showed linear increase with increasing concentrations of Gelucire indicating AL-type solubility diagrams. The mean dissolution time (MDT) of loratadine decreased after preparation of SDs with Gelucire 50/13 indicating increased dissolution rate. FTIR studies showed the stability of loratadine and the absence of a well-defined interaction. DSC and XRD studies revealed the amorphous state of loratadine in SDs which was further confirmed from SEM. From the dissolution parameters, it is evident that the solubility and dissolution rate of loratadine was enhanced by SDs with Gelucire 50/13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutical drug classification: correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  2. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  PubMed  Google Scholar 

  3. Ghorab MK, Adeyeye MC. Enhancement of ibuprofen, dissolution via wet granulation with beta-cyclodextrin. Pharm Dev Technol. 2001;6:305–14.

    Article  CAS  PubMed  Google Scholar 

  4. Nokhodchi A, Javadzadeh Y, Siahi-Shadbad MR, Jalali BM. The effect of type and concentration of vehicles on the dissolution rate of poorly soluble drug (indomethacin) from liquisolid compacts. J Pharm Pharm Sci. 2005;8:18–25.

    CAS  PubMed  Google Scholar 

  5. Kim CK, Cho YJ, Gao ZG. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J Control Release. 2001;70:149–55.

    Article  CAS  PubMed  Google Scholar 

  6. Elaine ML, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  Google Scholar 

  7. Teofilo V, Bruno S, Paulo C. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75.

    Article  Google Scholar 

  8. Kai T, Akiyama Y, Nomura S, Sato M. Oral absorption improvement of poorly soluble drug using solid dispersion technique. Chem Pharm Bull. 1996;44:568–71.

    Article  CAS  PubMed  Google Scholar 

  9. Khan GM, Zhu JB. Preparation, characterization, and dissolution studies of ibuprofen solid dispersions using polyethylene glycol (PEG), talc, and PEG-talc as dispersion carriers. Drug Dev Ind Pharm. 1998;24:455–62.

    Article  CAS  PubMed  Google Scholar 

  10. Kearney AS, Gabriel DL, Mehta SC, Radebaugh GW. Effect of polyvinyl pyrrolidone on the crystallinity and dissolution rate of solid dispersions of the anti-inflammatory Ci-987. Int J Pharm. 1994;104:169–74.

    Article  CAS  Google Scholar 

  11. Okonogi S, Oguchi T, Yonemochi E, Puttipipatkhachorn S, Yamamoto K. Improved dissolution of ofloxacin via solid dispersion. Int J Pharm. 1997;156:175–80.

    Article  CAS  Google Scholar 

  12. Montousse C, Pruvost M, Rodriguez F, Brossard C. Extrusion-spheronization manufacture of Gelucire matrix beads. Drug Dev Ind Pharm. 1999;25:75–80.

    Article  CAS  PubMed  Google Scholar 

  13. Khan N, Craig DQM. The influence of drug incorporation on the structure and release properties of solid dispersions in the lipid matrices. J Control Release. 2003;93:355–68.

    Article  CAS  PubMed  Google Scholar 

  14. Choy YW, Khan N, Yuen KH. Significance of lipid matrix aging on in vitro release and in vivo bioavailability. Int J Pharm. 2005;299:55–64.

    Article  CAS  PubMed  Google Scholar 

  15. Perissutti B, Rubessa F, Princivalle F. Solid dispersions of carbamazepine with Gelucire 44/14 and 50/13. STP Pharm Sci. 2000;10:479–84.

    CAS  Google Scholar 

  16. Shimpi SL, Chauhan B, Mahadik KR, Paradkar A. Stabilization and improved in vivo performance of amorphous Etoricoxib using Gelucire 50/13. Pharm Res. 2005;10:1727–35.

    Article  Google Scholar 

  17. Potluri RHK, Bandari S, Jukanti R, Veerareddy PR. Solubility enhancement and physicochemical characterization of carvedilol solid dispersion with Gelucire 50/13. Arch Pharm Res. 2011;34:51–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ter Laak AM, Tsai RS, Donne-Op den Kelder GM, Carrupt PA, Testa B, Timmerman H. Lipophilicity and bonding capacity of H1-antihistaminic agents in relation to their central sedative side effects. Eur J Pharm Sci. 1994;2:373–84.

    Article  Google Scholar 

  19. Khan MZI, Rausl D, Zanoski R, Zidar S, Mikulcic JH, Krizmanic L, et al. Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro–in vivo correlation. Biol Pharm Bull. 2004;27:1630–5.

    Article  CAS  PubMed  Google Scholar 

  20. Sehgal A, Srivastava J, Arora VK. Nasal pharmaceutical compositions of loratadine. Patent no. WO 2004082589A2, 2004.

  21. Abdel-Rahman SI, Ahmad SM, Samy IM, Badawy AM. Interactions of loratadine with cyclodextrins. Ethiop Pharm J. 1999;17:1–19.

    CAS  Google Scholar 

  22. Omar L, El-Barghouthi MI, Masoud NA, Abdoh AA, Al Omari MM, Zughul MB, et al. Inclusion complexation of loratadine with natural and modified cyclodextrins: Phase solubility and thermodynamic studies. J Solution Chem. 2007;36:605–16.

    Article  CAS  Google Scholar 

  23. Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.

    Article  CAS  PubMed  Google Scholar 

  24. Barzegar-Jalali M, Maleki N, Garjani A, Khandar AA, Haji-Hosseinloo M, Jabbari R, et al. Enhancement of dissolution rate and anti-inflammatory effects of piroxicam using solvent deposition technique. Drug Dev Ind Pharm. 2002;28:681–6.

    Article  CAS  PubMed  Google Scholar 

  25. Higuchi J, Connors K. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  26. Zerrouk N, Chemtob C, Arnaud P, Toscani S, Dugue J. In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions. Int J Pharm. 2001;225:49–62.

    Article  CAS  PubMed  Google Scholar 

  27. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–66.

    Article  CAS  PubMed  Google Scholar 

  28. Tang L, Khan SU, Muhammad NA. Evaluation and selection of bio-relevant dissolution media for a poorly water soluble new chemical entity. Pharm Dev Technol. 2001;6:531–40.

    Article  CAS  PubMed  Google Scholar 

  29. Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastro intestinal tract. Adv Drug Deliv Rev. 1997;25:3–14.

    Article  Google Scholar 

  30. Damian F, Blaton N, Naesens L, Balzarini J, Kinget R, Augustijns P, et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci. 2000;10:311–22.

    Article  CAS  PubMed  Google Scholar 

  31. Hancock BC, Zographi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Okonogi S, Yonemochi E, Oguchi T, Puttipipatkhachorn S, Yamamoto K. Enhanced dissolution of ursodeoxycholic acid from the solid dispersion. Drug Dev Ind Pharm. 1997;23:1115–21.

    Article  CAS  Google Scholar 

  33. Shin SC, Kim J. Physicochemical characterization of solid dispersion of furosemide with TPGS. Int J Pharm. 2003;251:79–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Gattefosse, France, for gift sample of Gelucire 50/13. The authors also thank Mr. T. Jaypal Reddy, Correspondent St. Peter’s Institute of Pharmaceutical Sciences, Hanamkonda, for providing facilities.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Bandari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandari, S., Jadav, S., Eedara, B.B. et al. Enhancement of Solubility and Dissolution Rate of Loratadine with Gelucire 50/13. J Pharm Innov 9, 141–149 (2014). https://doi.org/10.1007/s12247-014-9181-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-014-9181-6

Keywords

Navigation