Skip to main content
Log in

Evaluation on the Drug–Polymer Mixing Status in Amorphous Solid Dispersions at the Early Stage Formulation and Process Development

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Drug and polymer mixing status in amorphous solid dispersions, an important aspect with regard to the physical stability and in vivo performance of such systems, was evaluated in this report with two case studies. In the first case study, the mixing between the drug and the polymer in an amorphous solid dispersion was assessed at both particulate and bulk levels to ensure that a homogeneous solid dispersion was obtained. In the second study, drug–polymer distribution evaluation in amorphous solid dispersions facilitated the selection of an optimal drug loading and a robust manufacturing process at the early stage of formulation development. Through these two case studies, it is suggested that establishing a multi-faceted characterization approach for amorphous solid dispersions is key to achieve a better understanding of these complex systems and successful delivery of stable and efficacious amorphous formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Engers D, Teng J, Jimenez-Novoa J, Gent P, Hossack S, Campbell C, et al. A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion. J Pharm Sci. 2010;99(9):3901–22.

    PubMed  CAS  Google Scholar 

  2. Kennedy M, Hu J, Gao P, Li L, Ali-Reynolds A, Chal B, et al. Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: a case study. Mol Pharm. 2008;5(6):981–93.

    Article  PubMed  CAS  Google Scholar 

  3. Onoue S, Sato H, Ogawa K, Kawabata Y, Mizumoto T, Yuminoki K, et al. Improved dissolution and pharmacokinetic behavior of cyclosporine A using high-energy amorphous solid dispersion approach. Int J Pharm. 2010;399(1–2):94–101.

    Article  PubMed  CAS  Google Scholar 

  4. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci Us. 1999;88(10):1058–66.

    Article  CAS  Google Scholar 

  5. Vranic E. Amorphous pharmaceutical solids. Bosn J Basic Med Sci. 2004;4(3):35–9.

    PubMed  Google Scholar 

  6. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  7. Leane MM, Sinclair W, Qian F, Haddadin R, Brown A, Tobyn M, et al. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant. Pharm Dev Technol. 2012;18(2):359–66.

    Article  PubMed  Google Scholar 

  8. Takeuchi H, Nagira S, Yamamoto H, Kawashima Y. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int J Pharm. 2005;293(1–2):155–64.

    Article  PubMed  CAS  Google Scholar 

  9. Dong Z, Chatterji A, Sandhu H, Choi DS, Chokshi H, Shah N. Evaluation of solid state properties of solid dispersions prepared by hot-melt extrusion and solvent co-precipitation. Int J Pharm. 2008;355(1–2):141–9.

    Article  PubMed  CAS  Google Scholar 

  10. Chokshi RJ, Sandhu HK, Iyer RM, Shah NH, Malick AW, Zia H. Characterization of physico-mechanical properties of indomethacin and polymers to assess their suitability for hot-melt extrusion processs as a means to manufacture solid dispersion/solution. J Pharm Sci Us. 2005;94(11):2463–74.

    Article  CAS  Google Scholar 

  11. Lakshman JP, Cao Y, Kowalski J, Serajuddin AT. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5(6):994–1002.

    Article  PubMed  CAS  Google Scholar 

  12. Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012;29(3):806–17.

    Article  PubMed  CAS  Google Scholar 

  13. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshioka M, Hancock BC, Zografi G. Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J Pharm Sci. 1995;84(8):983–6.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14(12):1691–8.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinylacetate) in relation to indomethacin crystallization. Pharm Res. 1999;16(11):1722–8.

    Article  PubMed  CAS  Google Scholar 

  17. Miyazaki T, Yoshioka S, Aso Y. Physical stability of amorphous acetanilide derivatives improved by polymer excipients. Chem Pharm Bull. 2006;54(8):1207–10.

    Article  PubMed  CAS  Google Scholar 

  18. Huang J, Wigent RJ, Schwartz JB. Drug–polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci Us. 2008;97(1):251–62.

    Article  CAS  Google Scholar 

  19. Sugamura Y, Fujii M, Nakanishi S, Suzuki A, Shibata Y, Koizumi N, et al. Effect of particle size of drug on conversion of crystals to an amorphous state in a solid dispersion with crospovidone. Chem Pharm Bull (Tokyo). 2011;59(2):235–8.

    Article  CAS  Google Scholar 

  20. Puri V, Dantuluri AK, Bansal AK. Investigation of atypical dissolution behavior of an encapsulated amorphous solid dispersion. J Pharm Sci. 2011;100(6):2460–8.

    Article  PubMed  CAS  Google Scholar 

  21. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395(1–2):232–5.

    Article  PubMed  CAS  Google Scholar 

  22. Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26(11):2523–34.

    Article  PubMed  CAS  Google Scholar 

  23. Yoo SU, Krill SL, Wang Z, Telang C. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci. 2009;98(12):4711–23.

    Article  PubMed  CAS  Google Scholar 

  24. Onoue S, Sato H, Kawabata Y, Mizumoto T, Hashimoto N, Yamada S. In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. J Control Release. 2009;138(1):16–23.

    Article  PubMed  CAS  Google Scholar 

  25. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64(5):396–421.

    Article  PubMed  CAS  Google Scholar 

  26. Onoue S, Uchida A, Takahashi H, Seto Y, Kawabata Y, Ogawa K, et al. Development of high-energy amorphous solid dispersion of nanosized nobiletin, a citrus polymethoxylated flavone, with improved oral bioavailability. J Pharm Sci. 2011;100(9):3793–801.

    Article  PubMed  CAS  Google Scholar 

  27. Hasegawa S, Ke P, Buckton G. Determination of the structural relaxation at the surface of amorphous solid dispersion using inverse gas chromatography. J Pharm Sci. 2009;98(6):2133–9.

    Article  PubMed  CAS  Google Scholar 

  28. Hogan SE, Buckton G. The application of near infrared spectroscopy and dynamic vapor sorption to quantify low amorphous contents of crystalline lactose. Pharm Res. 2001;18(1):112–6.

    Article  PubMed  CAS  Google Scholar 

  29. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  PubMed  CAS  Google Scholar 

  30. Tao J, Sun Y, Zhang GGZ, Yu L. Solubility of small-molecule crystals in polymers: d-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res. 2009;26(4):855–64.

    Article  PubMed  CAS  Google Scholar 

  31. Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    PubMed  CAS  Google Scholar 

  32. Marsac PJ, Li T, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2008;26(1):139–51.

    Article  PubMed  Google Scholar 

  33. Zhao Y, Inbar P, Chokshi HP, Malick AW, Choi DS. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory. J Pharm Sci. 2011;100(8):3196–207.

    Article  PubMed  CAS  Google Scholar 

  34. Lyon R, Lester D, Lewis E, Lee E, Yu L, Jefferson E, et al. Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity. AAPS Pharm Sci Tech. 2002;3:1–15.

    Article  CAS  Google Scholar 

  35. Lewis EN, Carroll JE, Clarke F. NIR imaging: a near infrared view of pharmaceutical formulation analysis. NIR News. 2001;12:16–8.

    Article  Google Scholar 

  36. Ellison CD, Ennis BJ, Hamad ML, Lyon RC. Measuring the distribution of density and tabletting force in pharmaceutical tablets by chemical imaging. J Pharm Biomed Anal. 2008;48(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  37. Gowen AA, O’Donnell CP, Cullen PJ, Bell SEJ. Recent applications of chemical imaging to pharmaceutical process monitoring and quality control. Eur J Pharm Biopharm. 2008;69(1):10–22.

    Article  PubMed  CAS  Google Scholar 

  38. Li W, Woldu A, Kelly R, McCool J, Bruce R, Rasmussen H, et al. Measurement of drug agglomerates in powder blending simulation samples by near infrared chemical imaging. Int J Pharm. 2008;350(1–2):369–73.

    Article  PubMed  CAS  Google Scholar 

  39. Ma H, Anderson C. Optimisation of magnification levels for near infrared chemical imaging of blending of pharmaceutical powders. J Near Infrared Spectrosc. 2007;15(2):137.

    Article  CAS  Google Scholar 

  40. Ma H, Anderson CA. Characterization of pharmaceutical powder blends by NIR chemical imaging. J Pharm Sci Us. 2008;97(8):3305–20.

    Article  CAS  Google Scholar 

  41. Shi Z, Anderson CA. Application of Monte Carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part II: photon radial diffusion in NIR chemical images. J Pharm Sci. 2010;99(10):4174–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Steve Lomuscio and Ms. Zeneida Go for sample preparations and Drs. Qingyan Hu and Raman Iyer for scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua (May) Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Choi, D.S., Zhang, YE. et al. Evaluation on the Drug–Polymer Mixing Status in Amorphous Solid Dispersions at the Early Stage Formulation and Process Development. J Pharm Innov 8, 163–174 (2013). https://doi.org/10.1007/s12247-013-9156-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-013-9156-z

Keywords

Navigation