Skip to main content
Log in

Design of Regenerative Anti-Lock Braking System Controller for 4 In-Wheel-Motor Drive Electric Vehicle with Road Surface Estimation

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper presents a regenerative anti-lock braking system control method with road detection capability. The aim of the proposed methodology is to improve electric vehicle safety and energy economy during braking maneuvers. Vehicle body longitudinal deceleration is used to estimate a road surface. Based on the estimation results, the controller generates an appropriate braking torque to keep an optimal for various road surfaces wheel slip and to regenerate for a given motor the maximum possible amount of energy during vehicle deceleration. A fuzzy logic controller is applied to fulfill the task. The control method is tested on a four in-wheel-motor drive sport utility electric vehicle model. The model is constructed and parametrized according to the specifications provided by the vehicle manufacturer. The simulation results conducted on different road surfaces, including dry, wet and icy, are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ω :

wheel angular speed, rad/s

a vx :

vehicle longitudinal acceleration, m/s2

p b :

braking pressure, bar

r :

wheel radius, m

m :

mass of the quarter vehicle, g

g :

gravitational acceleration, m/s2

T d :

driving torque, Nm

T t :

tire torque, Nm

T b :

total braking torque, Nm

T RB :

regenerative brake torque, Nm

T FB :

friction brake torque, Nm

I w :

inertia about the wheel rotational axis, gm2

k b :

braking coefficient

T j :

phase torque of motor, Nm

I j :

phase current of motor, A

θ :

rotor aligned position of motor, °

L :

phase bulk inductance of motor, H

N :

number of phases of motor

v vx :

vehicle longitudinal velocity, m/s

v wx :

wheel longitudinal velocity, m/s

λ :

wheel slip, %

μ :

tire-road friction coefficient

μ*:

estimated road surface

F x :

longitudinal force, N

F z :

vertical force, N

E c :

net energy consumption, kJ

P d :

power spent on driving, W

P b :

power recovered via regenerative braking area, W

η m :

electric motor efficiency, %

s :

distance, m

a average :

average deceleration, m/s2

ABS IP :

ABS operation index of performance

λ average :

average wheel slip, %

λ e :

actual and optimal wheel slip difference absolute value, %

P reg :

regenerated power comparing to the total power required for deceleration, %

i :

subscript for each wheel; i ∈ [front left (FL), front right (FR), rear left (RL), rear right (RR)]

j :

switched reluctance motor phase number

4WD:

4 in-Wheel-motor Drive

ABS:

Antilock Braking System

ASM:

Automotive Simulation Models™

DOF:

Degree of Freedom

ESP:

Electronic Stability Program

EV:

Electric Vehicle

FLC:

Fuzzy Logic Controller

ICE:

Internal Combustion Engine

MF:

Membership Function

MISO:

Multiple Input, Single Output

PID:

Proportional-Integral-Derivative

SRM:

Switched Reluctance Motor

SUV:

Sport Utility Vehicle

UOD:

Universe of Discourse

References

  • Acosta, M. and Kanarachos, S. (2017). Tire lateral force estimation and grip potential identification using neural networks, extended Kalman filter, and recursive least square. Neural Computing and Applications, 1–21

    Google Scholar 

  • Aksjonov, A., Augsburg, K. and Vodovozov, V. (2016). Design and simulation of the robust ABS and ESP fuzzy logic controller on the complex braking maneuvers. Applied Sciences 6, 12, 382–390

    Article  Google Scholar 

  • Aly, A. A. (2010). Intelligent fuzzy control for antilock brake system with road-surfaces identifier. Proc. IEEE Int. Conf. Mechatronics and Automation (ICMA), Xi'an, China.

    Google Scholar 

  • Bansal, R. C. (2005). Electric Vehicles, in: Emadi, A. (Ed.) Handbook of Automotive Power Electronics and Motor Drives. Taylor & Francis. Boca Raton, Florida, USA, 55–96

    Google Scholar 

  • Castillo, J. J., Cabrera, J. A., Guerra, A. J. and Simon, A. A. (2016). Novel electrohydraulic brake system with tire-road friction estimation and continuous brake pressure control. IEEE Trans. Industrial Electronics 63, 3, 1863–1875

    Article  Google Scholar 

  • Chen, H., Yang, J., Du, Z. and Wang, W. (2010). Adhesion control method based on fuzzy logic control for fourwheel driven electric vehicle. SAE Int. J. Passenger Cars-Mechanical Systems 3, 1, 217–225

    Article  Google Scholar 

  • Cikanek, S. R. (1994). Fuzzy Logic Electric Vehicle Regenerative Antiskid Braking and Traction Control System. U.S. Patent 5,358,317

    Google Scholar 

  • Dhameja, S. (2002). Electric Vehicle Battery Systems. Butterworth-Heinemann. Woburn, Massachusetts, USA, 1–42

    Book  Google Scholar 

  • Doumiati, M., Charara, A., Victorino, A. and Lechner, D. (2013). Vehicle Dynamics Estimation Using Kalman Filtering: Experimental Validation. 2nd edn. ISTE Ltd and John Wiley & Sons, Inc. Hoboken, New Jersey, USA, 37–61

    Google Scholar 

  • Ehret, T. (2014). Electronic Stability Program (ESP), in: Reif, K. (Ed.), Brakes, Brake Control and Driver Assistance Systems: Function, Regulation and Components. Springer, Friedrichshafen, Germany, 102–123

    Google Scholar 

  • Ehsani, M., Gao, Y., Gay, S. E. and Emadi, A. (2005). Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. CRC Press. Boca Raton, Florida, USA, 99–116, 204–232, 277–298

    Google Scholar 

  • El-Garhy, A. M., El-Sheikh, G. A. and El-Saify, M. H. (2013). Fuzzy life-extending control of anti-lock braking system. Ain Shams Engineering Journal 4, 4, 735–751

    Article  Google Scholar 

  • Guo, J., Jian, X. and Lin, G. (2014). Performance evaluation of an anti-lock braking system for electric vehicles with a fuzzy sliding mode controller. Energies 7, 10, 6459–6476

    Article  Google Scholar 

  • Han, K., Hwang, Y., Lee, E. and Choi, S. (2015). Robust estimation of maximum tire-road friction coefficient considering road surface irregularity. Int. J. Automotive Technology 17, 3, 415–425

    Article  Google Scholar 

  • Ivanov, V. G., Algin, V. B. and Shyrokau, B. N. (2006). Intelligent control for ABS application with identification of road and environmental properties. Int. J. Vehicle Autonomous Systems 4, 1, 44–67

    Article  Google Scholar 

  • Ivanov, V. (2015). A review of fuzzy methods in automotive engineering applications. European Transport Research Review 7, 29, 19–29

    Google Scholar 

  • Jianyao, H., Huawei, X., Zhiyuan, H., Linyi, H. and Qunxing, L. (2015). Study on braking force distribution based on fuzzy control algorithm. Proc. IEEE Advanced Information Technology, Electronic and Automation Control Conf. (IAEAC), Chongqing, China.

    Google Scholar 

  • Khatun, P., Bingham, C. M., Schofield, N. and Mellor, P. H. (2003). Application of fuzzy control algorithm for electric vehicle antilock braking/traction control systems. IEEE Trans. Vehicular Technology 52, 5, 1356–1364

    Article  Google Scholar 

  • Kiencke, U. and Nielsen, L. (2005). Automotive Control Systems: For Engine, Driveline, and Vehicle. 2nd edn. Springer-Verlag Berlin Heidelberg, Berlin, Germany, 301–350

    Book  Google Scholar 

  • Kim, D., Hwang, S. and Kim, H. (2008). Vehicle stability enhancement of four-wheel-drive hybrid electric vehicle using rear motor control. IEEE Trans. Vehicular Technology 57, 2, 727–735

    Article  MathSciNet  Google Scholar 

  • Kim, D.-H., Kim, J.-M., Hwang, S.-H. and Kim, H.-S. (2007). Optimal brake torque distribution for a fourwheel-drive hybrid electric vehicle stability enhancement. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 221, 11, 1357–1366

    Google Scholar 

  • Koch-Dücker, H.-J. and Papert, U. (2014). Antilock Braking System (ABS), in: Reif, K. (Ed.), Brakes, Brake Control and Driver Assistance Systems: Function, Regulation and Components. Springer, Friedrichshafen, Germany, 74–93

    Google Scholar 

  • Layne, J. R., Passino, K. M. and Yurkovich, S. (1993). Fuzzy learning control for antiskid braking systems. IEEE Trans. Control Systems Technology 1, 2, 122–129

    Article  Google Scholar 

  • Li, X., Xu, L., Hua, J., Li, J. and Ouyang, M. (2008). Regenerative braking control strategy for fuel cell hybrid vehicle using fuzzy logic. Proc. IEEE Int. Conf. Electrical Machines and Systems, Wuhan, China.

    Google Scholar 

  • Long, B., Lim, S. T., Ryu, J. H. and Chong, K. T. (2014). Energy-regenerative braking control of electric vehicles using three-phase brushless direct-current motors. Energies 7, 1, 99–114

    Article  Google Scholar 

  • Miller, J. M. (2005). Hybrid Electric Vehicles, in: Emadi, A. (Ed.), Handbook of Automotive Power Electronics and Motor Drives. Taylor & Francis. Boca Raton, Florida, USA, 21–36

    Google Scholar 

  • Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent Systems. 2nd edn. Addison-Wesley. Harlow, UK, 87–131

    Google Scholar 

  • Nian, X., Peng, F. and Zhang, H. (2014). Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Trans. Industrial Electronics 61, 10, 5798–5808

    Article  Google Scholar 

  • Pacejka, H. B. (2006). Tyre and Vehicle Dynamics. 2nd edn. Butterworth-Heinemann. Oxford, UK, 156–215

    MATH  Google Scholar 

  • Passino, K. M. and Yurkovich, S. (1998). Fuzzy Control. Addison-Wesley. Menlo Park, California, USA, 1–22, 23–118, 187–232

    Google Scholar 

  • Paterson, J. and Ramsay, M. (1993). Electric vehicle braking by fuzzy logic control. Proc. Conf. Record of the IEEE Industry Applications Society Annual Meeting, Toronto, Canada.

    Google Scholar 

  • Paul, D., Velenis, E., Cao, D. and Dobo, T. (2016). Optimal μ-estimation based regenerative braking strategy for an AWD HEV. IEEE Trans. Transportation Electrification 3, 1, 249–258

    Article  Google Scholar 

  • Peng, D., Zhang, J. and Yin, C. (2006). Regenerative braking control system improvement for parallel hybrid electric vehicle. Proc. IEEE Int. Technology and Innovation Conf., Hangzhou, China.

    Google Scholar 

  • Pusca, R., Ait-Amirat, Y., Berthon, A. and Kauffmann, J. M. (2004). Fuzzy-logic-based control applied to a hybrid electric vehicle with four separate wheel drives. IEE Proc.-Control Theory and Applications 151, 1, 73–81

    Article  Google Scholar 

  • Rajamani, R. (2012). Vehicle Dynamics and Control. 2nd edn. Springer. New York, USA, 87–112

    Book  MATH  Google Scholar 

  • Rath, J. J., Veluvolu, K. C. and Defoort, M. (2015). Simultaneous estimation of road profile and tire road friction for automotive vehicle. IEEE Trans. Vehicular Technology 64, 10, 4461–4471

    Article  Google Scholar 

  • Reznik, L. (1997). Fuzzy Controllers. Butterworth-Heinemann. Oxford, UK, 1–18

    Google Scholar 

  • Savitski, D., Augsburg, K. and Ivanov, V. (2014). Enhancement of energy efficiency, vehicle safety and ride comfort for all-wheel drive full electric vehicles. Proc. Eurobrake, Lille, France.

    Google Scholar 

  • Savitski, D., Ivanov, V., Shyrokau, B., Pütz, T., De Smet, J. and Theunissen, J. (2016). Experimental investigations on continuous regenerative anti-lock braking system of full electric vehicle. Int. J. Automotive Technology 17, 2, 327–338

    Article  Google Scholar 

  • Sharkawy, A. B. (2006). Genetic fuzzy self-tuning PID controllers for antilock braking systems. Alexandria Engineering Journal 45, 6, 657–673

    Google Scholar 

  • Tahami, F., Kazemi, R. and Farhanghi, S. (2003). A novel driver assist stability system for all-wheel-drive electric vehicles. IEEE Trans. Vehicular Technology 52, 3, 683–692

    Article  Google Scholar 

  • Xia, X., Xiong, L., Sun, K. and Yu, Z. P. (2016). Estimation of maximum road friction coefficient based on Lyapunov method. Int. J. Automotive Technology 17, 6, 991–1002

    Article  Google Scholar 

  • Xiong, L. and Yu, Z. (2011). Vehicle Dynamics Control of 4 In-Wheel-Motor Drived Electric Vehicle, in: Soylu, S., (Ed.) Electric Vehicles–Modelling and Simulation. InTech. Rijeka, Croatia, 67–106

    Book  Google Scholar 

  • Xu, G., Li, W., Xu, K. and Song, Z. (2011). An intelligent regenerative braking strategy for electric vehicles. Energies 4, 9, 1461–1477

    Article  Google Scholar 

  • Ye, M., Jiao, S. and Cao, B. (2010). Energy recovery for the main and auxiliary sources of electric vehicles. Energies 3, 10, 1673–1690

    Article  Google Scholar 

  • Zabler, E. (2014). Sensors for Brake Control, in: Reif, K. (Ed.), Brakes, Brake Control and Driver Assistance Systems: Function, Regulation and Components. Springer. Friedrichshafen, Germany, 142–153

    Google Scholar 

  • Zhang, J., Song, B., Cui, S. and Ren, D. (2009). Fuzzy logic approach to regenerative braking system. Proc. IEEE Int. Conf. Intelligent Human-Machine Systems and Cybernetics, Hangzhou, Zhejiang, China.

    Google Scholar 

  • Zhang, X., Wang, Y., Liu, G. and Yuan, X. (2016). Robust regenerative charging control based on T-S fuzzy sliding-mode approach for advanced electric vehicle. IEEE Trans. Transportation Electrification 2, 1, 52–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Vodovozov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksjonov, A., Vodovozov, V., Augsburg, K. et al. Design of Regenerative Anti-Lock Braking System Controller for 4 In-Wheel-Motor Drive Electric Vehicle with Road Surface Estimation. Int.J Automot. Technol. 19, 727–742 (2018). https://doi.org/10.1007/s12239-018-0070-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-018-0070-8

Key Words

Navigation