Skip to main content
Log in

Benefits and challenges of controlling a LED AFS (adaptive front-lighting system) using fuzzy logic

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

The vehicular illumination system has undergone considerable technological advances in recent decades such as the use of a Light Emitting Diode (LED) Adaptive Front-lighting System (AFS), which represents an industry breakthrough in lighting technology and is rapidly becoming one of the most important innovative technologies around the world in the lighting community. This paper presents AFS control alternatives using fuzzy logic (types 1 and 2) to determine its operating parameters taking into consideration the road conditions in the state of São Paulo (Brazil). Fuzzy logic is a well-known extension of the conventional (Boolean) logic that enables the treatment of uncertainty present in the information through the definition of intermediary membership values between the “completely true” and the “completely false”. This technique or modeling strategy is particularly important when a multi-parameter decision must be taken or the decisions are based on the human knowledge. The results show the potential of the methodology proposed and its suitability for light control providing safer nighttime driving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a 0, a 1 :

output model parameters

Δ :

deviation of type-1 interval fuzzy set

σ :

standard deviation of type-1 Gaussian fuzzy set

y :

current to LEDs (mA)

V :

velocity of the vehicle velocity (km/h)

R :

radius of the curve (m)

References

  • AL (2009). Automotive Lighting Website. http://www.allighting.de.

  • Altinten, A., Erdgan, S., Hapglu, H. and Alpbaz, M. (2003). Control of a polymerization reactor by fuzzy control method with genetic algorithm. Comput. Chem. Eng., 27, 1031–1040.

    Article  Google Scholar 

  • Anderson, T., Sawyers, T. and Bell, M, (1998). Optimization of a fuzzy logic traffic signal controller by a multiobjective genetic algorithm. 9th Int. Conf. Road Transport Information and Control, 454, 186–190.

    Article  Google Scholar 

  • Babuška, R. and Verbruggen, H. B. (1996). An overview of fuzzy modeling for control. Control Eng. Practice, 4, 1593–1606.

    Article  Google Scholar 

  • Bellman, R. E. and Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17, 141–164.

    Article  MathSciNet  Google Scholar 

  • Chen, B. and Liu, X. (2004). Reliable control design of fuzzy dynamic systems with time-varying delay. Fuzzy Sets and Systems, 146, 349–374.

    Article  MATH  MathSciNet  Google Scholar 

  • Du, G.-N. and Zhu, Z.-Y. (2006). Modeling spatial vagueness based on type-2 fuzzy set. J. Zhejiang University SCIENCE A 1, 250–256.

    Article  Google Scholar 

  • Dubois, D. and Prade, H. (1978). Operations on fuzzy numbers. Int. J. Systems Science, 9, 613–626.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D. and Prade, H. (1979). Operations in a fuzzy-valued logic. Information and Control, 43, 224–240.

    Article  MATH  MathSciNet  Google Scholar 

  • Ekriasa, A., Eloholma, M., Halonen, L., Song, X., Zhang, X. and Wen, Y. (2008). Road lighting and headlights: Luminance measurements and automobile lighting simulations. Building and Environment, 43, 530–536.

    Article  Google Scholar 

  • EN (2003). Road Lighting—Part 3: Calculation of Performance. European Standard EN 13201-3, Publication 270-2003, Ref. No. EN 13201-3: 2003 E.

  • Feng, J., Li, J. and Yu, F. (2003). GA-based PID and fuzzy logic control for active vehicle suspension system. Int. J. Automotive Technology 4,4, 181–191.

    Google Scholar 

  • Gotoh, S. and Aoki, T. (1996). Development of active headlight. 15th Int. Conf. Enhanced Safety of Vehicles. Melbourne, Australia.

  • Hagras, H. A. (2004). A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Systems, 12, 524–539.

    Article  Google Scholar 

  • Hamm, M. (2002). Adaptive lighting functions history and future-Performance investigations and field test of user acceptance. SAE Paper No. 2002-01-0526.

  • Hara, T., Kuramochi, T., Ayama, M., Kojima, S. and Sato, T. (2001). Evaluation of AFS from Driver’s Point of View, Progress in Automobile Lighting. Darmstadt. Germany’ Technical University of Darmstadt. 397–402.

    Google Scholar 

  • Hisdal, E. (1981). The IF-THEN ELSE statement and interval-values fuzzy sets of higher type. Int. J. Man-Machine Studies, 15, 385–455.

    Article  MATH  MathSciNet  Google Scholar 

  • Hogrefe, H. (2000). Adaptive front lighting systems for optimum illumination of curved roads, highway lanes and other driving situations. SAE Paper No. 2000-01-0431.

  • Ishiguro, K. and Yamada, Y. (2004). Control technology for bending mode AFS. SAE Paper No. 2004-01-0441.

  • Just Auto (2007). Annual Just-auto’s Review of 2007 — Management Briefing. Just Auto. Aroq Limited. UK.

    Google Scholar 

  • Karnik, N. N. and Mendel, J. M. (1998). Introduction to type-2 fuzzy logic systems. Fuzzy Systems Proc. IEEE World Cong. Computational Intelligence. The 1998 IEEE Int. Conf., 2, 915–920.

    Google Scholar 

  • Karnik, N. N. and Mendel, J. M. (2000). Operations on type-2 fuzzy sets. Int. J. Fuzzy Sets and Systems, 1, 327–348.

    Google Scholar 

  • King, P. J. and Mamdani, E. H. (1977). The application of fuzzy control systems to industrial processes. Automatica, 13, 235–242.

    Article  Google Scholar 

  • Kosonen, L. (2003). Multi-agent fuzzy signal control based on real-time simulation. World Cong. Intelligent Transport System, October, Transportation Research Part C: Emerging Technologies, 11, 389–403.

    Google Scholar 

  • Hwang, J. and Song, C. (2005). Fuzzy estimation of vehicle speed using an accelerometer and wheel sensors. Int. J. Automotive Technology 6,4, 359–365.

    Google Scholar 

  • Hella (2009). Hella website. www.hella.de.

  • Li, L., Lin, W.-H. and Liu, H. (2006). Type-2 fuzzy logic approach for short-term traffic forecasting. Intelligent Transport Systems, IEEE Proc., 153, 33–40.

    Article  Google Scholar 

  • Liang, Q. and Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEE Trans. Fuzzy Systems, 8, 535–550.

    Article  Google Scholar 

  • Löwenau, J. P., Strob, M. H., Bernasch, J. H., Reich, F. M. and Rummel, A. H. (2001). Evaluation of adaptive light control in the BMW driving simulator. Proc. 2001 Driving Simulation Conf., Arcueil, France. INRETS.

  • Mendel, J. M. (2001). Uncertain Rule-based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall. London. UK.

    MATH  Google Scholar 

  • Mendel, J. M. (2003). Fuzzy sets for words: A new beginning. The IEEE Int. Conf. Fuzzy Systems, 37–42.

  • Mendoza, O., Licea, G. and Melin, P. (2007). Modular neural networks and type-2 fuzzy logic for face recognition. Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS’ 07, 622–627.

  • Mizumoto, M. and Tanaka, K. (1976). Some properties of fuzzy sets of type-2. Information and Control, 31, 312–340.

    Article  MATH  MathSciNet  Google Scholar 

  • Mizumoto, M. and Tanaka, K. (1981). Fuzzy sets of type-2 under algebraic product and algebraic sum. Fuzzy Sets and Systems, 5, 277–290.

    Article  MATH  MathSciNet  Google Scholar 

  • Neumann, R. (2004). AFS halogen headlamp system: Experimental study and first field results. SAE Paper No. 2004-01-0439.

  • Neumann, R. (2006). LED front lighting — Optical concepts, styling opportunities and consumer expectations. SAE Paper No. 2006-01-0100.

  • Niittymäki, J. and Turunen, E. (2003). Traffic signal control n similarity logic reasoning. Fuzzy Sets and Systems, 133, 109–131.

    Article  MATH  MathSciNet  Google Scholar 

  • Østergaard, J.-J. (1977). Fuzzy logic control of heat exchange process. M. M. Gupta, G. N. Saridis, B. R. Gaines (Eds.). Fuzzy Automata and Decision Process. North-Holland. Amsterdam. 285–320.

    Google Scholar 

  • Pareek, U. and Kar, I. N. (2006). Estimating compressor discharge pressure of gas turbine power plant using type-2 fuzzy logic systems. IEEE Int. Conf. Fuzzy Systems, 649–654.

  • Ren, Q., Qin, Z., Baron, L., Birglen, L. and Balazinski, M. (2007). Identification of rigid-body dynamics of robotic manipulators using type-2 fuzzy logic filter. Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS’ 07, 387–392.

  • Sala, A., Guerra, T. M. and Babuška, R. (2005). Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 156, 432–444.

    Article  MATH  MathSciNet  Google Scholar 

  • Schmocker, J., Ahuja, S. and Bell, M. (2008). Multiobjective signal control of urban junctions- Framework and a London case study. Transportation Research Part C, 16, 454–470.

    Article  Google Scholar 

  • Sivak, M., Schoettle, B., Flannagan, M. and Minoda, T. (2005). Optimal strategies for adaptive curve lighting. J. Safety Research, 36, 281–288.

    Article  Google Scholar 

  • Stern, D. (2008). Global Market Review of Automotive Lighting-Forecasts to 2013, 2008 Edn. Just Auto. Aroq Limited. UK.

    Google Scholar 

  • Tahayori, H., Tettamanzi, A. G. B. and Degli Antoni, G. (2006). Approximated type-2 fuzzy set operations. IEEE Int. Conf. Fuzzy Systems, 1910–1917.

  • Thovutikul, S., Auephanwiriyakul, S. and Theera-Umpon, N. (2007). Microcalcification detection in mammograms using interval type-2 fuzzy logic system. IEEE Int. Fuzzy Systems Conf., FUZZ-IEEE 2007, 1–5.

  • UNECE (2008). UNECE website. http://www.unece.org/trans/main/wp29/wp29regs41-60.html

  • Wördenweber, B., Wallaschek, J., Boyce, P. and Donald D. Hoffman, D. (2007). Automotive Lighting and Human Vision. Springer Verlag. USA.

    Google Scholar 

  • Yu, F., Feng, J. and Li, J. (2002). A fuzzy logic controller design for a vehicle ABS with a on-line optimized target wheel slip ratio. Int. J. Automotive Technology 3,4, 165–170.

    Google Scholar 

  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning — 1, Information Sciences, 8, 199–249.

    Article  MathSciNet  Google Scholar 

  • Zukauskas, A., Shur, M. and Caska, R. (2002). Introduction to Solid-State Lighting. Wiley Interscience. USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lukacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukacs, L., Dassanayake, M., Magalhaes, R. et al. Benefits and challenges of controlling a LED AFS (adaptive front-lighting system) using fuzzy logic. Int.J Automot. Technol. 12, 579–588 (2011). https://doi.org/10.1007/s12239-011-0068-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-011-0068-y

Key Words

Navigation