Skip to main content

Advertisement

Log in

Potential Effects of Sea-Level Rise on Salt Marsh Elevation Dynamics in a New Hampshire Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Salt marsh survival in the face of sea-level rise (SLR) depends largely on a marsh’s ability to compensate for increased flooding by building in elevation, but the rate of elevation gain depends on processes that are not well-understood (i.e., belowground productivity, sediment accretion, and subsidence). An array of planted and unplanted pots was installed in the field to examine the effects of tidal flooding on productivity and elevation change. We found that belowground plant volume increased linearly as elevation increased for both Spartina patens and Spartina alterniflora. Even though the volume of roots increased by 400% with elevation for S. alterniflora and > 200% for S. patens, there was no relationship between belowground volume and elevation change of the original soil surface, perhaps due to the infilling of porosity by roots. However, the soil in planted treatments subsided significantly less than in unplanted controls. Measurements from Surface Elevation Tables (SETs) indicated that local high marshes have been losing elevation relative to sea level at an average rate of 2.1 mm/year. The rate of vertical gain decreased at SET locations of greater marsh elevation, and high marshes did not keep pace with SLR even when sediment supply appeared to be high (TSS = 57 ± 7 mg/L). The high marsh accretion deficit, combined with a continuing trend of reduced belowground growth with increased flooding due to SLR, suggests that S. alterniflora will replace less flood-tolerant species over time, potentially causing loss of high marsh habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen, J.R.L., and M.J. Duffy. 1998. Medium-term sedimentation on high intertidal mudflats and salt marshes in in the Severn Estuary, SW Britain: the role of wind and tide. Marine Geology 150 (1–4): 1–27.

    Article  Google Scholar 

  • Anisfeld, S.C., and T.D. Hill. 2012. Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. Estuaries and Coasts 35 (1): 201–211.

    Article  CAS  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81 (2): 169–193.

    Article  Google Scholar 

  • Bertness, M.D. 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72 (1): 138–148.

    Article  Google Scholar 

  • Blum, L.K. 1993. Spartina alterniflora root dynamics in a Virginia marsh. Marine Ecology Progress Series 102: 169–178.

    Article  Google Scholar 

  • Blum, M.D., and H.H. Roberts. 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience 2 (7): 488–491.

    Article  CAS  Google Scholar 

  • Boyd, B.M., and C.K. Sommerfield. 2016. Marsh accretion and sediment accumulation in a managed tidal wetland complex of Delaware Bay. Ecological Engineering 92: 37–46.

    Article  Google Scholar 

  • Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt. 1989. Accretion rates and sediment accretion in Rhode Island salt marshes. Estuaries 12 (4): 300–317.

    Article  CAS  Google Scholar 

  • Bromberg, C.D., and M.D. Bertness. 2005. Reconstructing New England salt marsh losses using historical maps. Estuaries 28 (6): 823–832.

    Article  Google Scholar 

  • Cahoon, D.R. 2015. Estimating relative sea level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38 (3): 1077–1084.

    Article  Google Scholar 

  • Cahoon, D.R., and G.R. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter 32 (1): 8–12.

    Google Scholar 

  • Cahoon, D.R., and D.J. Reed. 1995. Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. Journal of Coastal Research 11 (2): 357–369.

    Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128 (1-2): 1–9.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, C.T. Roman, J.P. Schmit, and D.E. Skidds. 2018. Evaluating the relationship among vertical wetland development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuaries and Coasts 42 (1): 1–15.

    Article  CAS  Google Scholar 

  • Callaway, J.C., R.D. DeLaune, and W.H. Patrick Jr. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13 (1): 181–191.

    Google Scholar 

  • Chapman, V.J. 1960. Salt marshes and salt deserts of the world. New York: Interscience.

    Google Scholar 

  • Chen, J., L. Wang, Y. Li, W. Zhang, X. Fu, and Y. Le. 2012. Effect of Spartina alterniflora invasion and its controlling technologies on soil microbial respiration of a tidal wetland in Chongming Dongtan, China. Ecological Engineering 41: 52–59.

    Article  Google Scholar 

  • Cherry, J.A., K.L. McKee, and J.B. Grace. 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea level rise. Journal of Ecology 97 (1): 67–77.

    Article  Google Scholar 

  • Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, and J.C. Lynch. 2003. Global carbon sequestration in tidal, saline, wetland soils. Global Biogeochemical Cycles 17 (4): 1–12.

    Article  CAS  Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal marsh surface. Estuarine, Coastal and Shelf Science 50 (3): 315–331.

    Article  Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387 (6630): 253–260.

    Article  CAS  Google Scholar 

  • Crosby, S.C., A. Angermeyer, J.M. Adler, M.D. Bertness, L.A. Deegan, N. Sibinga, and H.M. Leslie. 2017. Spartina alterniflora biomass allocation and temperature: implications for salt marsh persistence with sea-level rise. Estuaries and Coasts 40 (1): 213–223.

    Article  CAS  Google Scholar 

  • Day, J.W., J. Rybczyk, F. Scarton, A. Rismondo, D. Are, and G. Cecconi. 1999. Soil accretionary dynamics, sea-level rise and the survival of wetlands in a Venice lagoon: a field and modelling approach. Estuarine, Coastal and Shelf Science 49 (5): 607–628.

    Article  Google Scholar 

  • Day, J.W., G.P. Kemp, D.J. Reed, D.R. Cahoon, R.M. Boumans, J.M. Suhayda, and R. Gambrell. 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction, and sea-level rise. Ecological Engineering 337: 229–240.

    Article  Google Scholar 

  • DeLaune, R.D., J.A. Nyman, and W.H. Patrick Jr. 1994. Peat collapse, ponding, and wetland loss in a rapidly subsiding coastal marsh. Journal of Coastal Research 10 (4): 1021–1030.

    Google Scholar 

  • Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98 (25): 14218–14223.

    Article  CAS  Google Scholar 

  • Ford, M.A., D.R. Cahoon, and J.C. Lynch. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering 12 (3-4): 189–205.

    Article  Google Scholar 

  • Gleason, M.L., D.A. Elmer, and N.C. Pien. 1979. Effects of stem density upon sediment retention by saltmarsh cordgrass, Spartina alterniflora Loisel. Estuaries 2 (4): 271–273.

    Article  Google Scholar 

  • Harrington, J.T., J.G. Mexal, and J.T. Fisher. 1994. Volume displacement provides a quick and accurate way to quantify new root production. Tree Planter’s Notes 45 (4): 121–124.

    Google Scholar 

  • Hopkinson, C.S., J.T. Morris, S. Fagherrazzi, W.M. Wollheim, and P.A. Raymond. 2018. Lateral edge erosion as a source of sediments for vertical marsh accretion. Journal of Geophysical Research: Biosciences 123: 2444–2465.

    CAS  Google Scholar 

  • Janousek, C.N., and C. Mayo. 2013. Plant responses to increased inundation and salt exposure: interactive effects on tidal marsh productivity. Plant Ecology 214 (7): 917–928.

    Article  Google Scholar 

  • Karegar, M.A., T.H. Dixon, and S.E. Engelhart. 2016. Subsidence along the Atlantic Coast of North America: insights from GPS and late Holocene relative sea level data. Geophysical Research Letters 43: 1–8.

    Article  Google Scholar 

  • Kastler, J.A., and P.L. Wiberg. 1996. Sedimentation and boundary changes of Virginia salt marshes. Estuarine, Coastal and Shelf Science 42 (6): 683–700.

    Article  Google Scholar 

  • Kelley, J.K., W.R. Gehrels, and D.F. Belknap. 1995. Late Holocene relative sea-level rise and and the geological development of tidal marshes at Wells, Maine, USA. Journal of Coastal Research 11 (1): 136–153.

    Google Scholar 

  • Kirwan, M.L., and L.K. Blum. 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulations in coastal wetlands responding to climate change. Biogeosciences 8 (4): 987–993.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., and G.R. Guntenspergen. 2015. Response of plant productivity to experimental flooding in a stable and a submerging marsh. Ecosystems 18 (5): 903–913.

    Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D'Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37 (23): 1–5.

  • Kirwan, M.L., R.R. Christain, L.K. Blum, and M.M. Brinson. 2012. On the relationship between sea level and Spartina alterniflora production. Ecosystems 15 (1): 140–147.

    Article  Google Scholar 

  • Koch, M.S., I.A. Mendelssohn, and K.L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35 (2): 399–408.

    Article  CAS  Google Scholar 

  • Langley, A.J., K.L. Mckee, D.R. Cahoon, J.A. Cherry, and J.P. Megonigal. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. 2009. Proceedings of the National Academy of Sciences 106 (15): 6182–6186.

    Article  Google Scholar 

  • Langley, A.J., T.J. Mozdzer, K.A. Shepard, S.B. Hagerty, and J.P. Megonigal. 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea-level rise. Global Change Biology 19 (5): 1495–1503.

    Article  Google Scholar 

  • Leonard, L.A. 1997. Controls of sediment transport and deposition in an incised mainland marsh basin, southeastern North Carolina. Wetlands 17 (2): 263–274.

    Article  Google Scholar 

  • Leonard, L.A., and A.L. Croft. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science 69 (3-4): 325–336.

    Article  Google Scholar 

  • Mendelssohn, I.A., K.L. McKee, and W.H. Patrick. 1981. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science 214 (4519): 439–441.

    Article  CAS  Google Scholar 

  • Morris, J.T. 2007. Estimating net primary production of salt marsh macrophytes. In Principles and standards for measuring net primary production in long-term ecological studies, ed. T.J. Fahey and A.K. Knapp, 106–119. New York: Oxford University Press.

    Chapter  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.

    Article  Google Scholar 

  • Morris, J.T., K. Sundberg, and C.S. Hopkinson. 2013. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26 (3): 78–84.

    Article  Google Scholar 

  • Nicholls, R.J., and A. Cazenave. 2010. Sea-level rise and its impact on coastal zones. Science 328 (5985): 1517–1520.

    Article  CAS  Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. DeLaune, and W.H. Patrick Jr. 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69 (3-4): 370–380.

    Article  Google Scholar 

  • Priestas, A.M., and S. Fagherazzi. 2011. Morphology and hydrodynamics of wave-cut gullies. Geomorphology 131 (1-2): 1–2): 1–13.

    Article  Google Scholar 

  • Raposa, K.B., M.L. Cole Ekberg, D.M. Burdick, N.T. Ernst, and S.C. Adamowicz. 2016. Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise. Regional Environmental Change 16 (5): 389–397.

    Google Scholar 

  • Raposa, K.B., R.L.J. Weber, M. Cole Ekberg, and W. Ferguson. 2017. Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuaries and Coasts 40 (3): 640–650.

    Article  CAS  Google Scholar 

  • Scheurch, M., A. Vafeidis, T. Slawig, and S. Temmerman. 2013. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea-level rise. Journal of Geophysical Research: Earth Surface 118 (1): 84–96.

    Google Scholar 

  • Seliskar, D.M., J.L. Gallagher, D.M. Burdick, and L.A. Mutz. 2002. The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. Journal of Ecology 90 (1): 1–11.

    Article  Google Scholar 

  • Short, F.T., S.K. Kosten, P.A. Morgan, S. Malone, and G.E. Moore. 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.

    Article  Google Scholar 

  • Smith, S.M. 2015. Vegetation change in salt marshes of Cape Cod National Seashore (Massachusetts, USA) between 1984 and 2013. Wetlands 35 (1): 127–136.

    Article  Google Scholar 

  • Stumpf, R.P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science 17 (5): 495–508.

    Article  Google Scholar 

  • Van Ardenne, L.B., S. Jolicouer, D. Bérubé, D.M. Burdick, and G.L. Chmura. 2018. The importance of geomorphic context for estimating the carbon stock of salt marshes. Geordarma 330: 264–275.

    Google Scholar 

  • Vermeer, M., and S. Rahmstorf. 2009. Global sea level linked to global temperature. Proceedings of the National Academy of Sciences 106 (51): 21527–21532.

    Article  Google Scholar 

  • Voss, C.M., R.R. Christian, and J.T. Morris. 2013. Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina salt marshes. Marine Biology 160 (1): 181–194.

    Article  Google Scholar 

  • Wang, X.C., R.F. Chen, and A. Berry. 2003. Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): long-chain n-alkanes and stable carbon isotope compositions. Estuarine, Coastal and Shelf Science 58 (4): 917–928.

    Article  CAS  Google Scholar 

  • Warren, R.S., and W.A. Niering. 1993. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74 (1): 96–103.

    Article  Google Scholar 

  • Watson, E.B., A.J. Oczkowski, C. Wigand, A.R. Hanson, E.W. Davey, S.C. Crosby, R.L. Johnson, and H.M. Andrews. 2014. Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the Northeastern U.S. Climatic Change 125 (3-4): 501–509.

    Article  CAS  Google Scholar 

  • Watson, E.B., K. Szura, C. Wigand, K.B. Raposa, K. Blount, and M. Cencer. 2016. Sea level rise, drought and decline of Spartina patens in New England marshes. Biological Conservation 196: 173–181.

    Article  Google Scholar 

  • Watson, E.B., C. Wigand, E.W. Davey, H.M. Andrews, J. Bishop, and K.B. Raposa. 2017a. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for Southern New England. Estuaries and Coasts 40 (3): 662–681.

    Article  CAS  Google Scholar 

  • Watson, E.B., K.B. Raposa, J.C. Carey, C. Wigand, and R.S. Warren. 2017b. Anthropocene survival of southern New England’s salt marshes. Estuaries and Coasts 40 (3): 617–625.

    Article  CAS  Google Scholar 

  • Weston, N.B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts 37 (1): 1–23.

    Article  Google Scholar 

  • White, D.A., and J.M. Trapani. 1982. Factors influencing the disappearance of Spartina alterniflora from litterbags. Ecology 63 (1): 242–245.

    Article  Google Scholar 

  • Wigand, C., P. Brennan, M. Stolt, M. Holt, and S. Ryba. 2009. Soil respiration rates in coastal marshes subject to increased watershed nitrogen loads in southern New England, USA. Wetlands 29 (3): 952–963.

    Article  Google Scholar 

  • Wigand, C., K. Sundberg, A. Hansen, E. Davey, R. Johnson, E. Watson, and J. Morris. 2016. Varying inundation regimes differentially affect natural and sand amended marsh sediments. PLoS One 11 (10): e0164956.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cathy Wigand for her insight and guidance, Beth Watson for lending the greenhouse gas analyzer, Karen McKee for the advice during the set-up of the experiment, Chris Peter for his advice and help in the field, and the research assistants that made the study possible: Jacob Moore, Robert Lafreniere, Myrilla Hartkopf, Spencer Tate, Sarah Tierney, Molly McGovern, and John Wichert.

Funding

Permission to install the experiment and SETs was granted through the GBNERR. Funding for this research was provided by the University of New Hampshire Graduate School, the University of New Hampshire Marine Biology Program, the William Spaulding Endowment in Support of Marine Biology Research at the Jackson Estuarine Laboratory, the Society for Ecological Restoration Laderman Student Grant, and the Maine Association of Wetland Scientists, JEL contribution number 570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Payne.

Additional information

Communicated by R. Scott Warren

Electronic supplementary material

ESM 1

(DOCX 52.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, A.R., Burdick, D.M. & Moore, G.E. Potential Effects of Sea-Level Rise on Salt Marsh Elevation Dynamics in a New Hampshire Estuary. Estuaries and Coasts 42, 1405–1418 (2019). https://doi.org/10.1007/s12237-019-00589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00589-z

Keywords

Navigation