Skip to main content

Advertisement

Log in

Large Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal marine organisms experience dynamic pH and dissolved oxygen (DO) conditions in their natural habitats, which may impact their susceptibility to long-term anthropogenic changes. Robust characterizations of all temporal scales of natural pH and DO fluctuations in different marine habitats are needed; however, appropriate time series of pH and DO are still scarce. We used multiyear (2008–2012), high-frequency (6 min) monitoring data to quantify diel, seasonal, and interannual scales of pH and DO variability in a productive, temperate tidal salt marsh (Flax Pond, Long Island, US). pHNBS and DO showed strong and similar seasonal patterns, with average (minimum) conditions declining from 8.2 (8.1) and 12.5 (11.4) mg l−1 at the end of winter to 7.6 (7.2) and 6.3 (2.8) mg l−1 in late summer, respectively. Concomitantly, average diel fluctuations increased from 0.22 and 2.2 mg l−1 (February) to 0.74 and 6.5 mg l−1 (August), respectively. Diel patterns were modulated by tides and time of day, eliciting the most extreme minima when low tides aligned with the end of the night. Simultaneous in situ pCO2 measurements showed striking fluctuations between ∼330 and ∼1,200 (early May), ∼2,200 (mid June), and ∼4,000 μatm (end of July) within single tidal cycles. These patterns also indicate that the marsh’s strong net heterotrophy influences its adjacent estuary by ‘outwelling’ acidified and hypoxic water during ebb tides. Our analyses emphasize the coupled and fluctuating nature of pH and DO conditions in productive coastal and estuarine environments, which have yet to be adequately represented by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57: 689–710.

    Article  Google Scholar 

  • Baumann, H., S.C. Talmage, and C.J. Gobler. 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change 2: 38–41.

    Article  CAS  Google Scholar 

  • Bertness, M.D. 2007. Atlantic shorelines: Natural history and ecology. Princeton: Princeton University Press Princeton.

    Google Scholar 

  • Boesch, D.F., and R.E. Turner. 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7: 460–468.

    Article  Google Scholar 

  • Borges, A.V., and M. Frankignoulle. 1999. Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. Journal of Marine Systems 19: 251–266.

    Article  Google Scholar 

  • Borges, A.V., and N. Gypens. 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology and Oceanography 55: 346–353.

    Article  CAS  Google Scholar 

  • Borges, A.V., S. Djenidi, G. Lacroix, J. Théate, B. Delille, and M. Frankignoulle. 2003. Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters 30: 1558.

    Article  Google Scholar 

  • Branch, T.A., B.M. DeJoseph, L.J. Ray, and C.A. Wagner. 2012. Impacts of ocean acidification on marine seafood. Trends in Ecology & Evolution 28: 178–186.

    Article  Google Scholar 

  • Burnett, L.E. 1997. The challenges of living in hypoxic and hypercapnic aquatic environments. American Zoologist 37: 633–640.

    Google Scholar 

  • Caffrey, J.M. 2004. Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27: 90–101.

    Article  CAS  Google Scholar 

  • Cai, W.-J., X. Hu, W.-J. Huang, M.C. Murrell, J.C. Lehrter, S.E. Lohrenz, W.-C. Chou, W. Zhai, J.T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, and G.-C. Gong. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4: 766–770.

    Article  CAS  Google Scholar 

  • Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365.

    Article  CAS  Google Scholar 

  • Collins, J.R., P.A. Raymond, W.F. Bohlen, and M.M. Howard-Strobel. 2013. Estimates of new and total productivity in central Long Island Sound from in situ measurements of nitrate and dissolved oxygen. Estuaries and Coasts 36: 74–97.

    Article  CAS  Google Scholar 

  • Dame, R., T. Chrzanowski, K. Bildstein, B. Kjerfve, H. McKellar, D. Nelson, J. Spurrier, S. Stancyk, H. Stevenson, J. Vernberg, and R. Zingmark. 1986. The outwelling hypothesis and North Inlet, South Carolina. Marine Ecology Progress Series 33: 7–229.

    Article  Google Scholar 

  • Denman, K., J.R. Christian, N. Steiner, H.-O. Pörtner, and Y. Nojiri. 2011. Potential impacts of future ocean acidification on marine ecosystems and fisheries: Current knowledge and recommendations for future research. ICES Journal of Marine Science 68: 1019–1029.

    Article  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    Article  CAS  Google Scholar 

  • Dickson, A.G., C.L. Sabine, and J.R. Christian. 2007. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3: 191.

    Google Scholar 

  • Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.

    Article  Google Scholar 

  • Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36: 221–236.

    Article  CAS  Google Scholar 

  • Ekau, W., H. Auel, H.O. Pörtner, and D. Gilbert. 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7: 1669–1699.

    Article  CAS  Google Scholar 

  • Fabry, V.J., J.B. McClintock, J.T. Mathis, and J.M. Grebmeier. 2009. Ocean acidification at high latitudes: the bellwether. Oceanography 22: 160–171.

    Article  Google Scholar 

  • Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320: 1490–1492.

    Article  CAS  Google Scholar 

  • Feely, R.A., S.R. Alin, J. Newton, C.L. Sabine, M. Warner, A. Devol, C. Krembs, and C. Maloy. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science 88: 442–449.

    Article  CAS  Google Scholar 

  • Fiedler, B., P. Fietzek, N. Vieira, P. Silva, H.C. Bittig, and A. Körtzinger. 2012. In situ CO2 and O2 measurements on a profiling float. Journal of Atmospheric and Oceanic Technology 30: 112–126.

    Article  Google Scholar 

  • Fietzek, P., B. Fiedler, T. Steinhoff, and A. Körtzinger. 2014. In situ quality assessment of a novel underwater pCO2 sensor based on membrane equilibration and NDIR spectrometry. Journal of Atmospheric and Oceanic Technology 31: 181–196.

    Article  Google Scholar 

  • Frankignoulle, M., I. Bourge, and W. Roland. 1996. Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnology and Oceanography 41: 365–369.

    Article  CAS  Google Scholar 

  • Frommel, A., A. Schubert, U. Piatkowski, and C. Clemmesen. 2012. Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Marine Biology 160: 1825–1834.

    Article  Google Scholar 

  • Gazeau, F., C. Quiblier, J.M. Jansen, J.-P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34, L07603.

    Article  Google Scholar 

  • Gazeau, F., L. Parker, S. Comeau, J.-P. Gattuso, W. O’Connor, S. Martin, H.-O. Pörtner, and P. Ross. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245.

    Article  CAS  Google Scholar 

  • Gobler, C.J., E. Depasquale, A. Griffith, and H. Baumann. 2014. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE 9: e83648.

    Article  Google Scholar 

  • Gooding, R.A., C.D.G. Harley, and E. Tang. 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America 106: 9316–9321.

    Article  CAS  Google Scholar 

  • Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, and M.-C. Buia. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454: 96–99.

    Article  CAS  Google Scholar 

  • Harley, C.D.G., A. Randall Hughes, K.M. Hultgren, B.G. Miner, C.J.B. Sorte, C.S. Thornber, L.F. Rodriguez, L. Tomanek, and S.L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Article  Google Scholar 

  • Hendriks, I.E., C.M. Duarte, and M. Álvarez. 2010. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science 86: 157–164.

    Article  CAS  Google Scholar 

  • Hofmann, G.E., and A.E. Todgham. 2010. Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology 72: 127–145.

    Article  CAS  Google Scholar 

  • Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, P.G. Matson, E.D. Crook, K.J. Kroeker, M.C. Gambi, E.B. Rivest, C.A. Frieder, P.C. Yu, and T.R. Martz. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6: e28983.

    Article  CAS  Google Scholar 

  • Houghton, R.A., and G.M. Woodwell. 1980. The Flax Pond ecosystem study: Exchanges of CO2 between a salt marsh and the atmosphere. Ecology 61: 1434–1445.

    Article  Google Scholar 

  • Hovel, K.A., and S.G. Morgan. 1997. Planktivory as a selective force for reproductive synchrony and larval migration. Marine Ecology Progress Series 157: 79–95.

    Article  Google Scholar 

  • Hurst, T.P., E.R. Fernandez, J.T. Mathis, J.A. Miller, C.M. Stinson, and E.F. Ahgeak. 2012. Resiliency of juvenile walleye pollock to projected levels of ocean acidification. Aquatic Biology 17: 247–259.

    Article  Google Scholar 

  • Hurst, T.P., E.R. Fernandez, and J.T. Mathis. 2013. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science 70: 812–822.

    Article  Google Scholar 

  • Ishimatsu, A., M. Hayashi, and T. Kikkawa. 2008. Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series 373: 295–302.

    Article  CAS  Google Scholar 

  • Kelly, M.W., J.L. Padilla-Gamiño, and G.E. Hofmann. 2013. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Global Change Biology 19: 2536–2546.

    Article  Google Scholar 

  • Kleypas, J.A., Feely, R.A., Fabry, V.J., Langdon, C., Sabine, C.L., and Robbins, L.L. 2006. Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, 88 pp. report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey: 88 pp.

  • Koch, F., and C. Gobler. 2009. The effects of tidal export from salt marsh ditches on estuarine water quality and plankton communities. Estuaries and Coasts 32: 261–275.

    Article  CAS  Google Scholar 

  • Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419–1434.

    Article  Google Scholar 

  • Kurihara, H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373: 275–284.

    Article  CAS  Google Scholar 

  • Le Quere, C., M.R. Raupach, J.G. Canadell, G. Marland, et al. 2009. Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2: 831–836.

    Article  Google Scholar 

  • Lohbeck, K.T., U. Riebesell, and T.B.H. Reusch. 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience 5: 346–351.

    Article  CAS  Google Scholar 

  • McConville, K., C. Halsband, E.S. Fileman, P.J. Somerfield, H.S. Findlay, and J.I. Spicer. 2013. Effects of elevated CO2 on the reproduction of two calanoid copepods. Marine Pollution Bulletin 73: 428–434.

    Article  CAS  Google Scholar 

  • Melzner, F., J. Thomsen, W. Koeve, A. Oschlies, M. Gutowska, H. Bange, H. Hansen, and A. Körtzinger. 2012. Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology 160: 1875–1888.

    Article  Google Scholar 

  • Miller, G.M., S.-A. Watson, J.M. Donelson, M.I. McCormick, and P.L. Munday. 2012. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change 2: 858–861.

    Article  CAS  Google Scholar 

  • Millero, F.J. 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research 61: 139–142.

    Article  CAS  Google Scholar 

  • Munday, P.L., M. Gagliano, J.M. Donelson, D.L. Dixson, and S.R. Thorrold. 2011. Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology Progress Series 423: 211–221.

    Article  Google Scholar 

  • Newell, R.I.E. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23: 51–61.

    Google Scholar 

  • O’Boyle, S., G. McDermott, T. Noklegaard, and R. Wilkes. 2013. A simple index of trophic status in estuaries and coastal bays based on measurements of pH and dissolved oxygen. Estuaries and Coasts 36: 158–173.

    Article  Google Scholar 

  • Odum, E.P. 1961. The role of tidal marshes in estuarine production. The Conservationist 15: 12–15.

    Google Scholar 

  • Odum, E.P. 1969. The strategy of ecosystem development. Science 164: 262–270.

    Article  CAS  Google Scholar 

  • Odum, W.E., E.P. Odum, and H.T. Odum. 1995. Nature’s Pulsing paradigm. Estuaries 18: 547–555.

    Article  Google Scholar 

  • Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R. Boynton. 1984. Chesapeake Bay anoxia: origin, development, and significance. Science 223: 22–27.

    Article  CAS  Google Scholar 

  • Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.

    Article  CAS  Google Scholar 

  • Parker, L., P. Ross, and W. O’Connor. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158: 689–697.

    Article  Google Scholar 

  • Parker, L.M., P.M. Ross, W.A. O’Connor, L. Borysko, D.A. Raftos, and H.-O. Pörtner. 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology 18: 82–92.

    Article  Google Scholar 

  • Pennings, S.C., and M.D. Bertness. 2001. Salt marsh communities. In Marine community ecology, ed. M.D. Bertness, S.D. Gainesand, and M. Hay. Sunderland: Sinauer.

    Google Scholar 

  • Pörtner, H.-O. 2010. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. The Journal of Experimental Biology 213: 881–893.

    Article  Google Scholar 

  • Provoost, P., S. van Heuven, K. Soetaert, R.W.P.M. Laane, and J.J. Middelburg. 2010. Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 7: 3869–3878.

    Article  CAS  Google Scholar 

  • Raposa, K.B., and C.T. Roman. 2001. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh. Wetlands 21: 451–461.

    Article  Google Scholar 

  • Richard, G.A. 1978. Seasonal and environmental variations in sediment accretion in a Long Island salt marsh. Estuaries 1: 29–35.

    Article  CAS  Google Scholar 

  • Riebesell, U., Fabry, V.J., Hansson, L., and Gattuso, J.P. 2010. Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union: 260.

  • Ries, J.B., A.L. Cohen, and D.C. McCorkle. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37: 1131–1134.

    Article  CAS  Google Scholar 

  • Salisbury, J., M. Green, C. Hunt, and J. Campbell. 2008. Coastal acidification by rivers: a new threat to shellfish? Eos, Transactions American Geophysical Union 89: 513.

    Article  Google Scholar 

  • Skelly, D.K., L.N. Joseph, H.P. Possingham, L.K. Freidenburg, T.J. Farrugia, M.T. Kinnison, and A.P. Hendry. 2007. Evolutionary responses to climate change. Conservation Biology 21: 1353–1355.

    Article  Google Scholar 

  • Spitzer, K.W., D.E. Marvin Jr., and A.G. Heath. 1969. The effect of temperature on the respiratory and cardiac response of the bluegill sunfish to hypoxia. Comparative Biochemistry and Physiology 30: 83–90.

    Article  CAS  Google Scholar 

  • Sunday, J.M., R.N. Crim, C.D.G. Harley, and M.W. Hart. 2011. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6: e22881.

    Article  CAS  Google Scholar 

  • Talmage, S.C., and C.J. Gobler. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107: 17246–17251.

    Article  CAS  Google Scholar 

  • Tupper, M., and K.W. Able. 2000. Movements and food habits of striped bass (Morone saxatilis) in Delaware Bay (USA) salt marshes: Comparison of a restored and a reference marsh. Marine Biology 137: 1049–1058.

    Article  Google Scholar 

  • Valiela, I., J.M. Teal, S. Volkmann, D. Shafer, and E.J. Carpenter. 1978. Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater. Limnology and Oceanography 23: 798–812.

    Article  CAS  Google Scholar 

  • Wagner, R.J., R.W.J. Boulger, C.J. Oblinger, and B.A. Smith. 2006. Guidelines and standard procedures for continuous water-quality monitors: Station operation, record computation, and data reporting. United States Geological Survey Techniques and Methods 1-D3: 51pp.

    Google Scholar 

  • Waldbusser, G.G., E.P. Voigt, H. Bergschneider, M.A. Green, and R.E. Newell. 2011. Biocalcification in the Eastern Oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries and Coasts 34: 221–231.

    Article  CAS  Google Scholar 

  • Wang, Z.A., and W.-J. Cai. 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): a marsh CO2 pump. Limnology and Oceanography 49: 341–354.

    Article  CAS  Google Scholar 

  • Widdows, J., R.I.E. Newell, and R. Mann. 1989. Effects of hypoxia and anoxia on survival, energy metabolism, and feeding of oyster larvae (Crassostrea virginica, Gmelin). Biological Bulletin 177: 154–166.

    Article  Google Scholar 

  • Woodwell, G.M., and E.V. Pecan. 1973. Flax Pond: an estuarine marsh. Upton: Brookhaven National Lab.

    Google Scholar 

  • Woodwell, G.M., D. Whitney, C. Hall, and R. Houghton. 1977. The Flax Pond ecosystem study: Exchanges of carbon in water between a salt marsh and Long Island Sound. Limnology and Oceanography 22: 833–838.

    Article  CAS  Google Scholar 

  • Wootton, J.T., C.A. Pfister, and J.D. Forester. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences 105: 18848–18853.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chris Schubert from the USGS for facilitating this study. Chris Murray and Alex Malvezzi are gratefully acknowledged for their assistance during the deployment of the CO2 sensor in 2012. H.B. and C.G. were partially funded by the National Science Foundation (NSF No. 1129622), and C.G. was partially funded by NOAA’s Ocean Acidification Program through award #NA12NOS4780148 from the National Centers for Coastal Ocean Science and the Chicago Community Trust. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Baumann.

Additional information

Communicated by Scott C. Neubauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, H., Wallace, R.B., Tagliaferri, T. et al. Large Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales. Estuaries and Coasts 38, 220–231 (2015). https://doi.org/10.1007/s12237-014-9800-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9800-y

Keywords

Navigation