Skip to main content

Advertisement

Log in

Integrating Successional Ecology and the Delta Lobe Cycle in Wetland Research and Restoration

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Inactive deltas are more extensive than active deltas in most deltaic landscapes; thus, the subsurface generally is dominated by mineral sediments that rapidly accreted at different times, whereas the landscape at any one time generally is dominated by ephemeral emergent wetlands that are slowly accreting via vegetative growth. Subsidence is slow enough in most deltas that emergent wetlands, although ephemeral, can persist for millennia but accelerating global sea level rise probably will slow wetland creation in active deltas and accelerate the loss of existing wetlands in inactive deltas this century worldwide. A recent publication created confusion regarding the effects of river management on coastal Louisiana, where spatially variable subsidence is great enough in some areas to mimic extremely rapid sea level rise. I show how integrating Successional Ecology with the Delta Lobe Cycle, and correcting some omissions and errors in recent publications, clarifies the effects of river management in coastal Louisiana and provides a framework for predicting deltaic landscape dynamics worldwide. Successional Ecology provides a framework for understanding changes in natural and managed environments worldwide, whereas the Delta Lobe Cycle provides a framework for understanding river-dominated deltas worldwide. Sediment diversions are a form of river management that removes artificial barriers to river flow and are designed to mimic hydrologic conditions during the active delta stage of the Delta Lobe Cycle by focusing rapid mineral sedimentation in open water and thus creating new emergent wetlands. Freshwater diversions are another form of river management that also removes artificial barriers to river flow but are designed to mimic hydrologic conditions during the inactive stages of the Delta Lobe Cycle by reducing salinity stress over large areas of emergent wetlands and thus promoting marsh vertical accretion via vegetative growth. The Delta Lobe Cycle and both types of river diversions also create salinity gradients that simultaneously increase the sensitivity of emergent wetlands to disturbance while increasing the ability of emergent wetlands to recover from disturbance. Freshwater diversions only slow the loss of existing wetlands because the natural Delta Lobe Cycle, artificial channels that increase salinity stress, artificial ridges that increase flooding stress, and repeated disturbances eventually will cause vertical accretion via vegetative growth to become inadequate. Formally integrating these concepts might advance research and restoration in deltaic landscapes worldwide especially in the majority of deltas where inactive deltas are more extensive than active deltas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Alisauskas, R., C.D. Ankney, and E.E. Klaas. 1988. Winter diets and nutrition of midcontinental lesser snow geese. Journal of Wildlife Management 52: 403–414.

    Article  Google Scholar 

  • Anisfeld, S.C., and T.D. Hill. 2012. Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. Estuaries and Coasts 35: 201–211.

    Article  CAS  Google Scholar 

  • Baker, A., T. Henkel, J. Lopez, and E. Boyd. 2011. Geomorphology and bald cypress restoration of the Caernarvon Delta near the Caernarvon Diversion, Southeast Louisiana. Lake Pontchartrain Basin Foundation, Metarie, Louisiana. http://www.saveourlake.org/PDF-documents/our-coast/Caernarvon/LPBF%20Caernarvon%20Delta%20Report%202011%20-FINAL.pdf. Accessed 19 May 2013.

  • Barras, J.A. 2009. Land area change and overview of major hurricane impacts in coastal Louisiana, 2004-08: U.S. Geological Survey Scientific Investigations Map 3080, scale 1:250,000, 6 p. pamphlet. http://pubs.usgs.gov/sim/3080/.

  • Berry, P.M., M. Sterling, J.H. Spink, C.J. Baker, R. Sylvester-Bradley, S.J. Mooney, A.R. Tams, and A.R. Ennos. 2004. Understanding and reducing lodging in cereals. Advances in Agronomy 84: 217–271.

    Article  Google Scholar 

  • Blum, M.D., and H.H. Roberts. 2012. The Mississippi Delta Region: past, present, and future. Annual Reviews in Earth and Planetary Sciences 40: 655–683.

    Article  CAS  Google Scholar 

  • Boyer, M.E., J.O. Harris, and R.E. Turner. 1997. Constructed crevasses and land gain in the Mississippi River delta. Restoration Ecology 5: 85–92. doi:10.1046/j.1526-100X.1997.09709.x.

    Article  Google Scholar 

  • Brand, L.A., L.M. Smith, J.Y. Takekawa, N.D. Athearn, K. Taylor, G.G. Shellenbarager, D.H. Schoellhamer, and R. Spenst. 2012. Trajectory of early tidal marsh restoration: elevation, sedimentation and colonization of breached salt ponds in the northern San Francisco Bay. Ecological Engineering 42: 19–29.

    Article  Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9. doi:10.1016/0025-3227(95)00087-F.

    Article  Google Scholar 

  • Cahoon, D.R., D.A. White, and J.C. Lynch. 2011. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology 131: 57–68. doi:10.1016/j.geomorph.2010.12.002.

    Article  Google Scholar 

  • Carle, M.V. 2011. Estimating wetland losses and gains in coastal North Carolina: 1994-2001. Wetlands 31: 1275–1285. doi:10.1007/s13157-011-0242-z.

    Article  Google Scholar 

  • Chabreck, R.H., and J.A. Nyman. 2005. Management of coastal wetlands. In Techniques for wildlife investigations and management, 6th ed, ed. C.E. Braun, 839–860. Bethesda: The Wildlife Society.

    Google Scholar 

  • Chabreck, R.H., and A.W. Palmisano. 1973. The effects of Hurricane Camille on the marshes of the Mississippi River Delta. Ecology 54: 1118–1123.

    Article  Google Scholar 

  • Chen, B., W. Yu, W. Liu, and Z. Liu. 2012. An assessment on restoration of typical marine ecosystems in China—achievements and lessons. Ocean and Coastal Management 57: 53–61.

    Article  CAS  Google Scholar 

  • Coleman, J.M. 1972. Deltas: process of deposition and models for exploration, 2nd ed. Minneapolis: Burgess.

    Google Scholar 

  • Coleman, J. M. 1988. Dynamic changes and the processes in the Mississippi river delta. Geological Society of America Bulletin 100:999-1015. doi:10.1130/0016-7606(1988)100<0999:DCAPIT>2.3.CO;2.

  • Coleman, J.M., O.K. Huh, and D. Braud Jr. 2008. Wetland loss in world deltas. Journal of Coastal Research 24(sp1): 1–14.

    Article  Google Scholar 

  • Conner, R., and G.L. Chmura. 2000. Dynamics of above- and belowground organic matter in a high latitude macrotidal saltmarsh. Marine Ecology Progress Series 204: 101–110. doi:10.3354/meps204101.

    Article  Google Scholar 

  • Couvillion, B. R., Barras, J. A., Steyer, G. D., W. Sleavin, M. Fischer, H. Beck, N. Trahan, G. Brad, and D. Heckman. 2011. Land area change in coastal Louisiana from 1932 to 2010: U.S. Geological Survey Scientific Investigations Map 3164, scale 1:265,000, 12 p. pamphlet. http://pubs.usgs.gov/sim/3164/. Accessed 18 Oct 2013.

  • Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52: 1220–1230.

    Article  CAS  Google Scholar 

  • Craft, C.B., J. Vymazal, and C.J. Richardson. 1995. Response of everglades plant communities to nitrogen and phosphorus additions. Wetlands 15: 258–271.

    Article  Google Scholar 

  • Daoust, R.J., and D.L. Childers. 2004. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem. Oecologia 141: 672–686.

    Article  Google Scholar 

  • Darby, F.A., and R.E. Turner. 2008a. Effects of eutrophication on salt marsh root and rhizome biomass accumulation. Marine Ecology Progress Series 363: 63–70. doi:10.3354/meps07423.

    Article  Google Scholar 

  • Darby, F.A., and R.E. Turner. 2008b. Below- and aboveground biomass of Spartina alterniflora: response to nutrient addition in a Louisiana salt marsh. Estuaries and Coasts 31: 326–334.

    Article  CAS  Google Scholar 

  • Day, J.W., J.E. Cable, J.H. Cowan Jr., R. DeLaune, K. de Mutsert, B. Fry, H. Mashriqui, D. Justic, P. Kemp, R.R. Lane, J. Rick, S. Rick, L.P. Rosas, G. Snedden, E. Swenson, R.R. Twilley, and B. Wissel. 2009. The impacts of pulsed reintroduction of river water on a Mississippi Delta coastal basin. Journal of Coastal Research 54: 225–243.

    Article  Google Scholar 

  • DeLaune, R.D. 1986. The use of d13C signature of C-3 and C-4 plants in determining past depositional environments in rapidly accreting marshes of the Mississippi River deltaic plain, Louisiana, USA. Chemical Geoogy: Isotop Geosciene Section: 59-315-320.

  • DeLaune, R.D., and S.R. Pezeshki. 1988. Relationship of mineral nutrients to growth of Spartina alterniflora in Louisiana salt marshes. Northeast Gulf Science 10: 195–204.

    Google Scholar 

  • DeLaune, R.D., J.A. Nyman, and W.H. Patrick Jr. 1994. Peat collapse, ponding, and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  • DeLaune, R.D., S.R. Pezeshki, and J. Jugsujinda. 2005. Impact of Mississippi River freshwater reintroduction on Spartina patens marshes: responses to nutrient input and lowering of salinity. Wetlands 25: 155–161.

    Article  Google Scholar 

  • Drew, M.C. 1975. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium, and potassium on the growth of the seminal roots system, and the shoot, in barley. New Phytologist 75: 479–490. doi:10.1111/j.1469-8137.1975.tb01409.x.

    Article  CAS  Google Scholar 

  • Erwin, R.M., D.R. Cahoon, J.J. Prosser, G.M. Sanders, and P. Hensel. 2006. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds. Estuaries and Coasts 29: 96–106.

    Article  Google Scholar 

  • Feller, I.C. 1995. Effects of nutrient enrichment on growth and herbivory by dwarf red mangrove (Rhizophora mangle). Ecological Monographs 65: 477–505. doi:10.1007/BF02394126.

    Article  Google Scholar 

  • Fox, L.I., Valiela, and E.L. Kinney. 2012. Vegetation cover and elevation in long-term experimental nutrient-enrichment plots in Great Sippewisett Salt Marsh, Cape Cod, Massachusetts: implications for eutrophication and sea level rise. Estuaries and Coasts 35: 445–458. doi:10.1007/s12237-012-9479-x.

    Article  CAS  Google Scholar 

  • Gossman, B. 2009. 2009 Operations, maintenance, and monitoring report for the Delta Wide Crevasses (MR-09) Project, Coastal Protection and Restoration Authority of Louisiana, Office of Coastal Protection and Restoration, New Orleans, Louisiana. 21 pp. http://lacoast.gov/new/Projects/Info.aspx?num=MR-09. Accessed 18 Oct 2011

  • Hodge, A. 2003. The plastic plant: root response to heterogenous supplies of nutrients. New Phytologist 162: 9–24. doi:10.1111/j.1469-8137.2004.01015.x.

    Article  Google Scholar 

  • Howes, N.C., D.M. FitzGerald, Z.J. Huges, I.Y. Georgiou, M.A. Kulp, M.D. Miner, J.M. Smith, and J.A. Barras. 2010. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences 107:14014–14019.

    Google Scholar 

  • Huang, H.D., R.R. Justic, J.W.D. Lane, and J.E. Cable. 2011. Hydrodynamic response of the Breton Sound estuary to pulsed Mississippi River inputs. Estuarine, Coastal and Shelf Science 95: 216–231.

    Article  Google Scholar 

  • Hyfield, E.C.G., J.W. Day, J.E. Cable, and J. Dubravko. 2008. The impacts of re-introducing Mississippi River water on the hydrologic budget and nutrient inputs of a deltaic estuary. Ecological Engineering 32: 347–359. doi:10.1016/j.ecoleng.2007.12.009.

    Article  Google Scholar 

  • Ialeggio, J.S., and J.A. Nyman. 2013. Nutria grazing preference as a function of fertilization, in press

  • Kearney, M.S., J.C. Alexis Riter, and R.E. Turner. 2011. Freshwater river diversions for marsh restoration in Louisiana: twenty-six years of changing vegetative cover and marsh area. Geophysical Research Letters 38: L16405. doi:10.1029/2011GL047847.

    Article  Google Scholar 

  • Kelly, S. 1996. Small sediment diversions (MR-01) MR-01-MSPR-0696-2 Progress Report No. 2 for the periods September 1, 1993 to June 10, 1996. Louisiana Department of Natural Resources, Baton Rouge, Louisiana.

  • Ket, W. A., J. P. Schubauer-Berigan, and C. B. Craft. 2011. Effects of five years of nitrogen and phosphorus addition on a Zizaniopsis miliacea tidal freshwater marsh. Aquatic Botany 95:17–23. doi:10.1016/j.aquabot.2011.03.003.

    Google Scholar 

  • Kim, W., D. Mohrig, R. Twilley, C. Paola, and G. Parker. 2009. Is it feasible to build new land in the Mississippi River delta? EOS 90:373-384.

  • Kirwan, M.L., A.B.. Burray, and W.S. Boyd. 2008. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophysical Research Letters 35: L05403. doi:10.1029/2007GL03268.

  • Koch, M.S., I.A. Mendelssohn, and K.L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35: 399–408. doi:10.4319/lo.1990.35.2.0399.

    Article  CAS  Google Scholar 

  • Kolker, A.S., M.A. Allison, and S. Hameed. 2011. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophysical Research Letter 38: L21404. doi:10.1029/2011GL049458.

    Article  Google Scholar 

  • Lane, R.R., J.W. Day Jr., and B. Thibodeaux. 1999. Water quality analysis of a freshwater diversion at Caernarvon, Louisiana. Estuaries 22: 327–336.

    Article  CAS  Google Scholar 

  • Lane, R.R., J.W. Day Jr., and J.N. Day. 2006. Wetland surface elevation, vertical accretion, and subsidence at three Louisiana estuaries receiving diverted Mississippi River water. Wetlands 26: 1130–1142.

    Article  Google Scholar 

  • LCWCRTF. 1993. Louisiana Coastal Wetlands Restoration Plan. Main Report and Environmental Impact Statement. Prepared by Louisiana Coastal Wetlands Conservation and Restoration Task Force. http://lacoast.gov/new/Pubs/Reports/program.aspx. Accessed 18 Oct 2013

  • LCWCRTF. 2010. The 2009 Evaluation Report to the U.S. Congress on the Effectiveness of Coastal Wetlands Planning, Protection, and Restoration Act Projects. http://lacoast.gov/new/Pubs/Reports/program.aspx. Accessed 18 Oct 2013.

  • LDWF. 2001. Louisiana Coastal Marsh Vegetative Type (poly), Geographic NAD83, LDWF (2001) [marsh_veg_type_poly_LDWF_2001]: Louisiana Department of Wildlife and Fisheries, Fur and Refuge Division, and the U.S. Geological Survey's National Wetlands Research Center., Lafayette, Louisiana, US. Downloaded 5 December from http://lagic.lsu.edu/data/losco/marsh_veg_type_poly_LDWF_2001.zip.

  • Lemmon, A.E., J.T. Magill, and J. Wiese. 2003. Charting Louisiana: five hundred years of maps. The Historic New Orleans Collection, New Orleans LA USA. ISBN 0-917860-47-0.

  • McCook, L.J. 1994. Understanding ecological community succession: causal models and theories, a review. Vegetatio. 100:115-147. DOI:10.1007/BF00033394.

    Google Scholar 

  • McFalls, T.B., P.A. Keddy, D. Campbell, and G. Shaffer. 2010. Hurricanes, floods, levees, and nutria: vegetation responses to interacting disturbance and fertility regimes with implications for coastal wetland restoration. Journal of Coastal Research 26: 901–911.

    Article  Google Scholar 

  • McGinnis II, T. E. 1997. Factors of soil strength and shoreline movement in a Louisiana coastal marsh. Masters Thesis. University of Southwestern Louisiana. Lafayette, Louisiana, doi:10.1007/s10533-008-9230-7.

  • Merino, J., D. Huval, and A.J. Nyman. 2010. Implication of nutrient and salinity interaction on the productivity of Spartina patens. Wetlands Ecology and Management 18: 111–117. doi:10.1007/s11273-008-9124-4.

    Article  Google Scholar 

  • Merino, J., C. Aust, and R. Caffey. 2011. Cost-efficacy in wetland restoration projects in coastal Louisiana. Wetlands 31: 367–375.

    Article  Google Scholar 

  • Middleton, B.A. 2009. Regeneration of costal marsh vegetation impacted by Hurricanes Katrina and Rita. Wetlands 29: 54–65.

    Article  Google Scholar 

  • Montalto, F.A., T.S. Steenhuis, and J.Y. Parlange. 2006. The hydrology of Piermont Marsh, a reference for tidal marsh restoration in the Hudson river estuary, New York. Journal of Hydrology 316: 108–128.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshway, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Article  Google Scholar 

  • Morris, J. T., D. Porter, M. Neet, P. A. Noble, L Schmidt, L. A. Lapine, and J. R. Jensen. 2005. Integrating LIDAR elevation data, multi-spectral imagery and neural network modeling for marsh characterization. International Journal of Remote Sensing 26:5221-5234. DOI:10.1080/01431160500219018.

    Google Scholar 

  • Morton, R.A., and J.A. Barras. 2011. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana. Journal of Coastal Research 27(6A):27-43. DOI:10.2112/JCOASTRES-D-10-00185.1.

    Google Scholar 

  • Mulder, E.G. 1954. Effect of mineral nutrition on lodging of cereals. Plant and Soil 5: 246–306. doi:10.1007/BF01395900.

    Article  CAS  Google Scholar 

  • Nature. 2011. Louisiana marsh restoration has failed. Nature 476: 178. doi:10.1038/476128a.

    Google Scholar 

  • Neubauer, S.C. 2008. Contribution of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78: 78–88. doi:10.1016/j.ecss.2007.11.011.

    Article  Google Scholar 

  • Nyman, J.A., and R.H. Chabreck. 1995. Fire in coastal marshes: history and recent concerns. In Proceedings 19th Tall Timbers Fire Ecology Conference- Fire in wetlands: a management perspective, eds. S.I. Cerulean and R.T. Engstrom 135–141. Tallahassee, Florida: Tall Timbers Research, Inc.

  • Nyman, J.A., M. Carloss, R.D. DeLaune, and W.H. Patrick Jr. 1994. Erosion rather than plant dieback as the mechanism of marsh loss in an estuarine marsh. Earth Surface Processes and Landforms 19: 69–84. doi:10.1002/esp.3290190106.

    Article  Google Scholar 

  • Nyman, J.A., C.R. Crozier, and R.D. DeLaune. 1995. Roles and patterns of hurricane sedimentation in an estuarine marsh landscape. Estuarine, Coastal and Shelf Science 40: 665–679. doi:10.1006/ecss.1995.0045.

    Article  CAS  Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. DeLaune, and W.H. Patrick Jr. 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380. doi:10.1016/j.ecss.2006.05.041.

    Article  Google Scholar 

  • Nyman, J.A., M.K. La Peyre, A. Caldwell, S. Piazza, C. Thom, and C. Winslow. 2009. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes. Journal of Hydrology 376: 327–336. doi:10.1016/j.jhydrol.2009.06.001.

    Article  CAS  Google Scholar 

  • Penland, S., R. Boyd, and J.R. Suter. 1988. Transgressive depositional systems of the Mississippi Delta Plain: a model for barrier shoreline and shelf sand development. Journal of Sedimentary Petrology 58: 932–949.

    Google Scholar 

  • Platt, W.J., and J.H. Connell. 2003. Natural disturbances and direction replacement of species. Ecological Monographs 73: 507–522.

    Article  Google Scholar 

  • Ravit B., J. Ehrenfeld, M. Häggblom, and M. Bartels. 2007. The effects of drainage and nitrogen enrichment on Phragmites australis, Spartina alterniflora, and their root-associated microbial communities. Wetlands 27:915-927. doi:10.1672/0277-5212(2007)27(915:TEODAN)2.0.CO;2.

    Google Scholar 

  • Reed, D.J. 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries 12: 222–227.

    Article  Google Scholar 

  • Roberts, H.H., and J.M. Coleman. 1996. Holocene evolution of the deltaic plain: a perspective—from Fisk to present. Engineering Geology 45: 113–138.

    Article  Google Scholar 

  • Saichuck, J., D. Harrell, S. Gauthier, D. Groth, Cl Hollier, N. Hummel, S. Linscombe, X. Sha, M. Stout, E. Webster, and L. White. 2011. Rice varieties and management tips. Louisiana State University Agricultural Center, Publication No. 2270. Baton Rouge, Louisiana.

  • Sasser, C.E., J.M. Visser, E. Mouton, J. Linscombe, and S.B. Hartley. 2008. Vegetation types in coastal Louisiana in 2007: U.S. Geological Survey Open-File Report 2008-1224, 1 sheet, scale 1:550,000. http://pubs.usgs.gov/of/2008/1224/pdf/OFR2008-1224.pdf.

  • Schrift, A.M., I.A. Mendelssohn, and M.D. Materne. 2008. Salt marsh restoration with sediment-slurry amendments following a drought-induced large-scale disturbance. Wetlands 28: 1071–1085.

    Article  Google Scholar 

  • Slocum, M., and I.A. Mendelssohn. 2008. Use of experimental disturbance to assess resilience along a known stress gradient. Ecological Indicators 8: 181–190. doi:10.1016/j.ecolind.2007.01.011.

    Article  Google Scholar 

  • Smith, S.M. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeastern Naturalist 16:183–208. doi:10.1656/045.016.0203.

    Google Scholar 

  • Stearns, L.A., and M.W. Goodwin. 1941. Notes on the winter feeding of the muskrat in Delaware. Journal of Wildlife Management 5: 1–12.

    Article  Google Scholar 

  • Stevenson, M.J., and F.P. Day. 1996. Fine-root biomass distribution and production along a barrier island chronosequence. American Midland Naturals 135: 205–217.

    Article  Google Scholar 

  • Tye, R.S., and J.H. Coleman. 1989. Evolution of Atchafalaya lacustrine deltas, south-central Louisiana. Sedimentary Geology 65: 95–112.

    Article  Google Scholar 

  • Tyler, A.C., J.G. Lambrinos, and E.D. Grosholz. 2007. Nitrogen inputs promote the spread of an invasive marsh grass. Ecological Applications 17: 1886–1898. doi:10.1890/06-0822.1.

    Article  Google Scholar 

  • Valiela, I., J.M. Teal, and N.Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetating: belowground biomass. Limnology and Oceanography 21: 245–252.

    Article  Google Scholar 

  • van der Valk, A.G. 1981. Succession in wetlands: a Gleasonian approach. Ecology 62: 688–696. doi:10.2307/1937737.

    Article  Google Scholar 

  • Visser, J.M., C.E. Sasser, R.H. Chabreck, and R.G. Linscombe. 1998. Marsh vegetation types of the Mississippi River Deltaic Plain. Estuaries 21: 818–828. doi:10.2307/1353283.

    Article  Google Scholar 

  • Visser, J.M., R.H. Chabreck, C.E. Sasser, and R.G. Linscombe. 2000. Marsh vegetation types of the Chenier Plain, Louisiana, USA. Estuaries 23: 318–327. doi:10.2307/1353324.

    Article  Google Scholar 

  • Visser, J.M., C.E. Sasser, and B.S. Cade. 2006. The effect of multiple stressors on salt marsh end-of-season biomass. Estuaries and Coasts 29: 328–339.

    Article  Google Scholar 

  • Warren, R.S.P.E., R. Fell, A.H. Rozsa, A.C. Brawley, E.T. Orsted, V. Olson, Swamy, and W.A. Neiring. 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology 10: 497–513.

    Article  Google Scholar 

  • Weller, M. W., and C. S. Spatcher. 1965. Role of habitat in the distribution and abundance of marsh birds. Special Report No. 43, Agricultural and Home Economics Experiment Station, Iowa State University.

  • Wells, J.T., and J.M. Coleman. 1987. Wetland loss and the subdelta life cycle. Estuarine, Coastal and Shelf Science 25: 111–125.

    Article  Google Scholar 

  • Weston, N.B., M.A. Vile, S.C. Neubauer, and D.J. Velinsky. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102: 135–151.

    Article  CAS  Google Scholar 

  • Wilsey, B.J., and R.H. Chabreck. 1991. Nutritional quality of nutria diets in three Louisiana wetland habitats. Northeast Gulf Science 12: 67–72.

    Google Scholar 

Download references

Acknowledgments

R. Keim and anonymous reviewers provided constructive criticism to earlier drafts of this manuscript. This work was partially supported by McIntire-Stennis Project number LAB 94095 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Nyman.

Additional information

Communicated by Scott C. Neubauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyman, J.A. Integrating Successional Ecology and the Delta Lobe Cycle in Wetland Research and Restoration. Estuaries and Coasts 37, 1490–1505 (2014). https://doi.org/10.1007/s12237-013-9747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9747-4

Keywords

Navigation