Skip to main content

Advertisement

Log in

Ecosystem Functions of Tidal Fresh, Brackish, and Salt Marshes on the Georgia Coast

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We examined patterns of habitat function (plant species richness), productivity (plant aboveground biomass and total C), and nutrient stocks (N and P in aboveground plant biomass and soil) in tidal marshes of the Satilla, Altamaha, and Ogeechee Estuaries in Georgia, USA. We worked at two sites within each salinity zone (fresh, brackish, and saline) in each estuary, sampling a transect from the creekbank to the marsh platform. In total, 110 plant species were found. Site-scale and plot-scale species richness decreased from fresh to saline sites. Standing crop biomass and total carbon stocks were greatest at brackish sites, followed by freshwater then saline sites. Nitrogen stocks in plants and soil decreased across sites as salinity increased, while phosphorus stocks did not differ between fresh and brackish sites but were lowest at salty sites. These results generally support past speculation about ecosystem change across the estuarine gradient, emphasizing that ecosystem function in tidal wetlands changes sharply across the relatively short horizontal distance of the estuary. Changes in plant distribution patterns driven by global changes such as sea level rise, changing climates, or fresh water withdrawal are likely to have strong impacts on a variety of wetland functions and services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldwin, A.H. and I.A. Mendelssohn. 1998. Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116: 543–555. doi:10.1007/s004420050620.

    Article  Google Scholar 

  • Birch, J.B. and J.L. Cooley. 1982. Production and standing crop patterns of giant cutgrass (Zizaniopsis miliacea) in a fresh-water tidal marsh. Oecologia 52: 230–235. doi:10.1007/BF00363842.

    Article  Google Scholar 

  • Costanza, R., R. dArge, R. deGroot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. Oneill, J. Paruelo, R.G. Raskin, P. Sutton, and M. vandenBelt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260. doi:10.1038/387253a0.

    Article  CAS  Google Scholar 

  • Costanza, R., O. Perez-Maqueo, M.L. Martinez, P. Sutton, S.J. Anderson, and K. Mulder. 2008. The value of coastal wetlands for hurricane protection. Ambio 37: 241–248. doi:10.1579/0044-7447(2008)37[241:TVOCWF]2.0.CO;2.

    Article  Google Scholar 

  • Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52: 1220–1230.

    CAS  Google Scholar 

  • Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S.C. Pennings, H. Guo, and M. Machmuller. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7: 73–78. doi:10.1890/070219.

    Article  Google Scholar 

  • Crain, C.M. 2007. Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuaries and Coasts 30: 26–34.

    CAS  Google Scholar 

  • Crain, C.M., B.R. Silliman, S.L. Bertness, and M.D. Bertness. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85: 2539–2549. doi:10.1890/03-0745.

    Article  Google Scholar 

  • Dai, T. and R.G. Wiegert. 1996. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology 77: 276–288. doi:10.2307/2265677.

    Article  Google Scholar 

  • Dame, R.F. and P.D. Kenny. 1986. Variability of Spartina alterniflora primary production in the Euhaline North inlet estuary. Marine Ecology Progress Series 32: 71–80. doi:10.3354/meps032071.

    Article  Google Scholar 

  • de Groot, R.S., M.A. Wilson, and R.M.J. Boumans. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41: 393–408. doi:10.1016/S0921-8009(02)00089-7.

    Article  Google Scholar 

  • Eleuterius, L.N. and F.C. Lanning. 1987. Silica in relation to leaf decomposition of Juncus roemerianus. Journal of Coastal Research 3: 531–534.

    Google Scholar 

  • Farber, S.C., R. Costanza, and M.A. Wilson. 2002. Economic and ecological concepts for valuing ecosystem services. Ecological Economics 41: 375–392. doi:10.1016/S0921-8009(02)00088-5.

    Article  Google Scholar 

  • Frost, J.W., S. Tymeri, and C. Craft. 2009. Effects of nitrogen and phosphorus additions on primary production and invertebrate densities in a Georgia (USA) tidal freshwater marsh. Wetlands 29: 196–203. doi:10.1672/07-79.1.

    Article  Google Scholar 

  • Gallagher, J.L., R.J. Reimold, R.A. Linthurst, and W.J. Pfeiffer. 1980. Aerial production, mortality, and mineral accumulation—export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh. Ecology 61: 303–312. doi:10.2307/1935189.

    Article  Google Scholar 

  • Greenberg, R., J.E. Maldonado, S. Droege, and M.V. McDonald. 2006. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates. BioScience 56: 675–685. doi:10.1641/0006-3568(2006)56[675:TMAGPO]2.0.CO;2.

    Article  Google Scholar 

  • Hatton, R.S., R.D. Delaune, and W.H. Patrick. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28: 494–502.

    Google Scholar 

  • Howard, R.J. and I.A. Mendelssohn. 1999. Salinity as a constraint on growth of oligohaline marsh macrophytes. II. Salt pulses and recovery potential. American Journal of Botany 86: 795–806. doi:10.2307/2656701.

    Article  Google Scholar 

  • Howard, R.J. and I.A. Mendelssohn. 2000. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses. Aquatic Botany 68: 143–164. doi:10.1016/S0304-3770(00)00108-X.

    Article  Google Scholar 

  • Judd, F.W. and R.I. Lonard. 2002. Species richness and diversity of brackish and salt marshes in the Rio Grande Delta. Journal of Coastal Research 18: 751–759.

    Google Scholar 

  • Judd, F.W. and R.I. Lonard. 2004. Community ecology of freshwater, brackish and salt marshes of the Rio Grande delta. Texas Journal of Science 56: 103–122.

    Google Scholar 

  • King, G.M., M.J. Klug, R.G. Wiegert, and A.G. Chalmers. 1982. Relation of soil-water movement and sulfide concentration to Spartina alterniflora production in a Georgia Salt-Marsh. Science 218: 61–63. doi:10.1126/science.218.4567.61.

    Article  CAS  Google Scholar 

  • Koerselman, W. and A.F.M. Meuleman. 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 1441–1450. doi:10.2307/2404783.

    Article  Google Scholar 

  • Kunza, A.E. and S.C. Pennings. 2008. Patterns of plant diversity in Georgia and Texas salt marshes. Estuaries and Coasts 31: 673–681.

    Article  Google Scholar 

  • Maricle, B.R., R.W. Lee, C.E. Hellquist, O. Kiirats, and G.E. Edwards. 2007. Effects of salinity on chlorophyll fluorescence and CO2 fixation in C-4 estuarine grasses. Photosynthetica 45: 433–440. doi:10.1007/s11099-007-0072-7.

    Article  CAS  Google Scholar 

  • Morse, J.L., J.P. Megonigal, and M.R. Walbridge. 2004. Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA. Biogeochemistry 69: 175–206. doi:10.1023/B:BIOG.0000031077.28527.a2.

    Article  CAS  Google Scholar 

  • Naidoo, G. and J. Kift. 2006. Responses of the saltmarsh rush Juncus kraussii to salinity and waterlogging. Aquatic Botany 84: 217–225. doi:10.1016/j.aquabot.2005.10.002.

    Article  Google Scholar 

  • Odum, W.E., T.J. Smith, J.K. Hoover, and C.C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States East Coast: A community profile. Washington, DC: U.S. Fish and Wildlife Service Report FWS/OBS-83/17.

  • Odum, W.E. 1998. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.

    Article  Google Scholar 

  • Perry, J.E. and R.B. Atkinson. 1997. Plant diversity along a salinity gradient of four marshes on the York and Pamunkey Rivers in Virginia. Castanea 62: 112–118.

    Google Scholar 

  • Schubauer, J.P. and C.S. Hopkinson. 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnology and Oceanography 29: 1052–1065.

    Google Scholar 

  • Sommers, L.E. and D.W. Nelson. 1972. Determination of total phosphorus in soils: A rapid perchloric acid digestion procedure. Soil Science Society of America Proceedings 36: 902–904.

    Article  CAS  Google Scholar 

  • Udell, H.F., J. Zarudsky, T.E. Doheny, and P.R. Burkhol. 1969. Productivity and nutrient values of plants growing in salt marshes of the town of Hempstead, Long Island. Bulletin of the Torrey Botanical Club 96: 42–51. doi:10.2307/2484006.

    Article  Google Scholar 

  • Vitousek, P.M. and R.W. Howarth. 1991. Nitrogen limitation on land and in the Sea—How can it occur? Biogeochemistry 13: 87–115. doi:10.1007/BF00002772.

    Article  Google Scholar 

  • Weston, N.B., R.E. Dixon, and S.B. Joye. 2006. Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research: Biogeosciences 111: G01009.

    Article  CAS  Google Scholar 

  • White, D.A., J.M. Trapani, L.B. Thien, and T.E. Weiss. 1978. Productivity and decomposition of dominant salt-marsh plants in Louisiana. Ecology 59: 751–759. doi:10.2307/1938779.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ken Helm, Daniel Saucedo, and Alana Lynes for help in the field, and the US EPA STAR program (RD 83222001-0 to C. Craft) and NSF (OCE99-82133, OCE06-20959) for funding. This is contribution number 990 of the University of Georgia Marine Institute. This work is a contribution of the Georgia Coastal Ecosystems LTER program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Pennings.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Appendix 1

Geographic coordinates of field sites (Logger = location of water column salinity measurements with permanently deployed loggers). (DOC 51.0 kb)

Appendix 2

Summary of two-factor analyses of variance for the effects of salinity zone and estuary on plant species richness. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. (DOC 41.0 kb)

Appendix 3

Summary of analyses of variance for the effects of salinity zone and estuary on soil C, N, and P. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. (DOC 42.0 kb)

Appendix 4

Summary of three-factor analyses of variance for the effects of salinity zone, estuary, and elevation on plant height, biomass, C, N, and P. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. (DOC 45.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Więski, K., Guo, H., Craft, C.B. et al. Ecosystem Functions of Tidal Fresh, Brackish, and Salt Marshes on the Georgia Coast. Estuaries and Coasts 33, 161–169 (2010). https://doi.org/10.1007/s12237-009-9230-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-009-9230-4

Keywords

Navigation