Skip to main content
Log in

Growing Cassava (Manihot esculenta) in Mato Grosso, Brazil: Genetic Diversity Conservation in Small–Scale Agriculture

  • Published:
Economic Botany Aims and scope Submit manuscript

Growing Cassava ( Manihot esculenta ) in Mato Grosso, Brazil: Genetic Diversity Conservation in Small–Scale Agriculture. Cassava (Manihot esculenta Crantz) is a tropical species that stands out as a food source for developing countries. Within an ethnobotanical and socioeconomic context, this study aimed to compare the level of genetic diversity of cassava maintained by small farmers in three municipalities of the Cuiabá Lowland in the state of Mato Grosso, Brazil: Cáceres, Porto Estrela, and Santo Antônio do Leverger. This region, which is included in the center of origin of cassava, is currently undergoing profound socioeconomic changes that can have negative impacts in the on farm conservation of cassava agrobiodiversity. We characterized 211 genotypes collected in 40 households in 10 communities, using 14 microsatellite loci. High levels for the observed (H O = 0.587) and expected (H E = 0.525) heterozygosities were found, whereas most of the genetic diversity was concentrated within communities (92%). A genetic differentiation was found between the municipality of Santo Antônio do Leverger and the municipalities of Cáceres and Porto Estrela, not only due to a higher geographic distance among them, but also due to soil, climatic, and cultural factors. A different number of local varieties was observed in each municipality, while the number of unique varieties in each municipality was high, 83%, 84%, and 61%, respectively, representing an important aspect for the in situ conservation of this crop. Although local names provided by farmers were phenotypically coherent, intravarietal variability among local varieties sharing the same name was high (97%). Santo Antônio do Leverger was considered as a priority area for in situ conservation. Nevertheless, in view of the decline in local traditional agriculture systems and socioeconomic transformations in this region, public policies providing support and incentives to farmers are necessary.

Cultivo de mandioca ( Manihot esculenta ) em Mato Grosso, Brasil: conservação da diversidade genética em agricultura de pequena escala. A mandioca (Manihot esculenta Crantz) é uma espécie tropical que se destaca como uma fonte de alimento para os países em desenvolvimento. Dentro de um contexto etnobotânico e sócio–econômico, este estudo teve como objetivos comparar o nível de diversidade genética da mandioca mantida por pequenos agricultores em três municípios, Cáceres, Porto Estrela e Santo Antônio do Leverger, na Baixada Cuiabana, Estado de Mato Grosso. Esta área está incluída no centro de origem da mandioca e vem atualmente sofrendo profundas mudanças sócio–econômicas que podem ter impactos negativos na conservação on farm da agrobiodiversidade. Nós caracterizamos 211 genótipos coletados em 40 roças em 10 comunidades, utilizando 14 locos microssatélites. Elevados níveis para a heterozigosidade observada (H O = 0,587) e esperada (H E = 0,525) foram observados, sendo que a maior parte da diversidade genética está concentrada dentro de comunidades (92%). Foi encontrada uma diferenciação genética entre o município de Santo Antônio do Leverger e os municípios de Cáceres e Porto Estrela, não apenas devido à maior distância geográfica entre eles, mas também em função de solo, clima e fatores culturais. Observou–se um número diferente de variedades locais em cada município, sendo que o número de variedades exclusivas em cada município foi elevado, 83%, 84% e 61%, respectivamente, o que representa um aspecto importante da conservação in situ desta cultura. Apesar dos nomes populares fornecidos pelos agricultores serem fenotipicamente coerentes, a variabilidade intravarietal entre as variedades locais que compartilham o mesmo nome foi alta (97%). Santo Antônio do Leverger foi considerada como uma área prioritária para a conservação in situ. No entanto, em vista do declínio dos sistemas agrícolas tradicionais e das transformações socioeconômicas na região, políticas públicas que deem suporte e incentivo aos agricultores são necessárias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Literature Cited

  • Alves–Pereira, A., N. Peroni, A. A. Gonçalves, R. Gribel, and R. C. Clement. 2011. Genetic structure of traditional varieties of bitter manioc in three soils in Central Amazonia. Genetica 139(10):1259–1271.

    Article  PubMed  Google Scholar 

  • Amorozo, M. C. M. 2000. Management and conservation of Manihot esculenta Crantz germplasm by traditional farmers in Santo Antônio do Leverger, Mato Grosso State, Brazil. Etnoecologica 4(6):69–83.

    Google Scholar 

  • ——— 2008. Maintenance and management of agrobiodiversity is small–scale agriculture. Functional Ecosystems and Communities 2(1):11–20.

    Google Scholar 

  • Basheer–Salimia, R., A. Murad, and J. Ward. 2012. Assessments of biodiversity based on molecular markers and morphological traits among West–Bank, Palestine fig genotypes (Ficus carica L.). American Journal of Plant Sciences 3(9):1241–1251.

    Article  Google Scholar 

  • Bellon, R. M. 1996. The dynamics of crop infraspecific diversity: A conceptual framework at the farmer level. Economic Botany 50(1):26–39.

    Article  Google Scholar 

  • Bhattacharjee, R., M. Ferguson, M. Gedil, D. Dumet, and I. Ingelbrecht. 2009. Field collection, preservation and large scale DNA extraction procedures for cassava (Manihot esculenta Crantz.). African Journal of Biotechnology 8:3424–3430.

    CAS  Google Scholar 

  • Chavarriaga–Aguirre, P., M. M. Maya, M. W. Bonierbale, S. Kresovich, M. A. Fregene, J. Tohme, and G. Kochert. 1998. Microsatellites in cassava (Manihot esculenta Crantz): Discovery, inheritance and variability. Theoretical and Applied Genetics 97(3):493–501.

    Article  Google Scholar 

  • Chepkoech, E., M. Kinyua, O. Kiplagat, E. E. Arunga, and S. Kimno. 2015. Genetic diversity of cassava mutants, hybrids and landraces using simple sequence repeat markers. American Journal of Experimental Agriculture 5(4):287–294.

    Article  Google Scholar 

  • Creste, S., A. N. Tulmann, and A. Figueira. 2001. Detection of single sequence repeat polymorphisms in denaturing polyacrilamide sequencing gels by silver staining. Plant Molecular Biology Reporter 19(4):299–306.

    Article  CAS  Google Scholar 

  • Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19:11–15.

    Google Scholar 

  • El–Sharkawy, A. M. 2004. Cassava biology and physiology. Plant Molecular Biology 56(4):481–501.

    Article  PubMed  Google Scholar 

  • Elias, M., G. S. Muhlen, D. Mckey, A. C. Roa, and J. Tohme. 2004. Genetic diversity of traditional South American local varieties of cassava (Manihot esculenta Crantz): Analysis using microsatellites. Economic Botany 58(2):242–256.

    Article  Google Scholar 

  • Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software Structure: A simulation study. Molecular Ecology 14(8):2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L. and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3):564–567.

    Article  PubMed  Google Scholar 

  • FAOSTAT. 2013. Food and Agriculture Organization of the United Nations. 2011. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567 (13 June 2013).

  • Hijmans, R. J., L. Guarino, M. Cruz, and E. Rojas. 2001. Computer tools for spatial analysis of plant genetic resources data. 1. DIVA–GIS. Plant Genetic Resources Newsletter 127:15–19.

    Google Scholar 

  • Isendahl, C. 2011. The domestication and early spread of manioc (Manihot esculenta Crantz): A brief synthesis. Latin American Antiquity 22(4):452–468.

    Article  Google Scholar 

  • Kizito, B. E., L. Chiwona–Kartlum, T. Egwang, and M. Fregene. 2007. Genetic diversity and variety composition of cassava on small scale farms in Uganda: An interdisciplinary study using genetic markers and farmer interviews. Genetica 130(3):301–318.

    Article  Google Scholar 

  • Marchetti, F. F., L. R., Jr. Massaro, M. C. Amorozo, and D. Butturi–Gomes. 2013. Maintenance of manioc diversity by traditional farmers in the state of Mato Grosso, Brazil: A 20–year comparison. Economic Botany 67(4):313–323.

  • Martins, P. S. and G. C. X. Oliveira. 2009. Dinâmica evolutiva em roças de caboclos amazônicos. In: Diversidade biológica e cultural da Amazônia. 2nd edition, eds., I. C. G. Vieira, J. M. C. Silva, D. C. Oren, and M. Â. D’Incao, 373–391. Belém, Brazil: Museu Paraense Emílio Goeldi.

  • Mba, R. E. C., P. Stephenson, K. Edwards, S. Melzer, J. Nkumbira, U. Gullberg, K. Apek, M. Gale, J. Tohme, and M. Fregene. 2001. Simple sequence repeats (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: Towards an SSR–based molecular genetic map. Theoretical and Applied Genetics 102(1):21–31.

    Article  CAS  Google Scholar 

  • McKey, D., M. Elias, B. Pujol, and A. Duputie. 2010. The evolutionary ecology of clonally propagated domesticated plants. New Phytologist 186(2):318–332.

    Article  PubMed  Google Scholar 

  • Mezette, T. F., C. G. Blumer, and E. A. Veasey. 2013. Morphological and molecular diversity among cassava genotypes. Pesquisa Agropecuária Brasileira 48(5):510–518.

    Article  Google Scholar 

  • Mühlen, G., A. Alves–Pereira, C. R. Clement, and T. L. Valle. 2013. Genetic diversity and differentiation of Brazilian bitter and sweet manioc varieties (Manihot esculenta Crantz, Euphorbiaceae) based on SSR molecular markers. Tipití: Journal of the Society for the Anthropology of Lowland South America 11(2):66–73.

    Google Scholar 

  • Ndung’u, J. N., F. N. Wachira, M. G. Kinyua, D. K. Lelgut, P. Njau, H. Okwaro, and H. Obiero. 2014. Genetic diversity study of Kenyan cassava germplasm using simple sequence repeats. African Journal of Biotechnology 13(8):926–935.

    Article  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. American Naturalist 106(949):283–292.

    Article  Google Scholar 

  • ——— 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70(12):3321–3323.

    Article  CAS  Google Scholar 

  • ——— 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oler, J. R. L. 2012. Conservação da agrobiodiversidade por agricultores de pequena escala em Mato Grosso. Dissertation, Ecology Department, São Paulo State University, Brazil, Brasil.

    Google Scholar 

  • Olsen, M. K. 2004. SNPs, SSRs and inferences on cassava’s origin. Plant Molecular Biology 56(4):517–526.

    Article  CAS  PubMed  Google Scholar 

  • Peakall, R. and P. E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288–295.

    Article  Google Scholar 

  • Peña–Venegas, C. P., T. J. Stomph, L. Verschoor, A. B. Lopez–Lavalle, and P. C. Struik. 2014. Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity 6:792–826.

    Article  Google Scholar 

  • Peroni, N., P. Y. Kageyama, and A. Begossi. 2007. Molecular differentiation, diversity, and folk classification of “sweet” and “bitter” cassava (Manihot esculenta) in Caiçara and Caboclo management systems (Brazil). Genetic Resources and Crop Evolution 54(6):1333–1349.

    Article  Google Scholar 

  • Perrier, X., A. Flori, and F. Bonnot, 2003. Data analysis methods. In: Genetic diversity of cultivated tropical plants, eds., P. Hamon, M. Seguin, X. Perrier, J. C. Glaszmann, 43–76. Montpelier, Vermont: Enfield, Science Publishers.

  • Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155(2):945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol, B., F. Renoux, M. Elias, L. Rival, and D. Mckey. 2007. The unappreciated ecology of landrace populations: Conservation consequences of soil seed banks in cassava. Biological Conservation 136(4):541–551.

    Article  Google Scholar 

  • Sameh, M. R., S. D. Olfa, B. Saleh, and F. Ali. 2014. Morphological and molecular characterization of the main olive varieties cultivated in the region of Hbebsa (North West of Tunisia). International Journal of Agronomy and Agricultural Research 5(2):87–93.

    Google Scholar 

  • Siqueira, M. V. B. M., T. T. Pinheiro, A. Borges, T. L. Valle, M. Zatarim, and E. A. Veasey. 2010. Microsatellite polymorphisms in cassava local varieties from the Cerrado Biome, Mato Grosso do Sul, Brazil. Biochemical Genetics 48(9–10):879–895.

    Article  CAS  PubMed  Google Scholar 

  • Sriroth, K. R., S. Chollakup, K. Choineerant, K. Piyachomkwan, and C. G. Oates. 2000. Processing of cassava wastes for improved biomass utilization. Bioresource Technology 71:63–70.

    Article  CAS  Google Scholar 

  • Szpiech, Z. A. and N. A. Rosenberg. 2011. On the size distribution of private microsatellite alleles. Theoretical Population Biology 80:100–113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yong–Bi, F., P. P. Wangsomnuk, and R. Benjawan. 2014. Thai elite cassava genetic diversity was fortuitously conserved through farming with different sets of varieties. Conservation Genetics 15(6):1463–1478.

    Article  Google Scholar 

  • Zonneveld, M. V., X. Scheldeman, P. Escribano, M. A. Viruel, P. V. Damme, W. Garcia, C. S. Tapia, J. Romero, M. Sigueñas, and J. I. Hormaza. 2012. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): Application of spatial analysis for conservation and use of plant genetic resources. Plos One 7(1):1–14.

    Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP for their support in funding the project n° 2008/03822–3, PEC–PG/CNPq and CNPq for the scholarships granted to NFC and EAV; and the farmers for providing the genotypes for this study. This publication contains traditional knowledge associated with Brazilian biodiversity. Pursuant to Provisional Measure no. 2.186–16, from August 23, 2001, the access to this knowledge for the purposes of scientific research, bioprospecting, and technological development is subject to the prior consent of the community that detains the knowledge and permission from the Conselho de Gestão do Patrimônio Genético of the Ministério do Meio Ambiente (CGEN – process no. 02000.002717/2009–68).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Veasey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, N.F., Oler, J.R.L., Marchetti, F.F. et al. Growing Cassava (Manihot esculenta) in Mato Grosso, Brazil: Genetic Diversity Conservation in Small–Scale Agriculture. Econ Bot 70, 15–28 (2016). https://doi.org/10.1007/s12231-016-9331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12231-016-9331-5

Key Words

Navigation