Skip to main content
Log in

Differential Accumulation and Degradation Of Anthocyanins In Red Norland Periderm is Dependent On Soil Type And Tuber Storage Duration

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To determine how soil type, 2,4-dichlorophenoxyacetic acid (2,4-D) treatment, and storage affects color and anthocyanin accumulation of Red Norland potatoes, tubers were grown in sand or peat, with or without 2,4-D treatment, and measured at vine kill, harvest or after storage. Tubers grown in sand were less red and accumulated fewer anthocyanins than tubers grown in peat. 2,4-D treatment increased redness regardless of soil type. Redness loss varied greatly among tubers with storage. Tubers that lost color with storage had a two-fold reduction in anthocyanins, and a two-fold increase in benzoic and cinnamic acids compared to harvest, indicating chemical degradation of anthocyanidins via B-ring cleavage and autoxidation. Sand-grown potatoes did not exhibit greater cinnamic acids compared to peat-grown potatoes, suggesting that their color differences were due more to differences in biosynthesis than degradation during skin set. To improve Red Norland tuber color, research should focus on increasing biosynthesis of anthocyanins.

Resumen

Para determinar la influencia del tipo de suelo, el tratamiento con el ácido 2,4-diclorofenoxiacético (2,4-D) y el almacenamiento, sobre el color y acumulación de antocianinas en papa Red Norland, se sembraron tubérculos en arena o turba, con o sin tratamiento con 2,4-D, con mediciones al secado del follaje, a la cosecha, o después del almacenamiento. Los tubérculos que crecieron en la arena eran menos rojos y acumularon menos antocianinas que los cultivados en turba. El tratamiento con 2,4-D aumentó lo rojizo independientemente del tipo de suelo. La pérdida de la pigmentación roja varió grandemente entre los tubérculos con almacenamiento. Los tubérculos que perdieron el color en el almacén tuvieron el doble de reducción en antocianinas y un aumento al doble en ácidos benzoico y cinámico comparados a la cosecha, indicando degradación química de antocianidinas por vía del rompimiento del anillo B y por autooxidación. Las papas cultivadas en la arena no exhibieron mayores ácidos cinámicos en comparación con las cultivadas en la turba, lo que sugiere que sus diferencias en color se debieron más a diferencias en la biosíntesis que a la degradación durante el embarnecimiento de la piel. Para mejorar el color del tubérculo en Red Norland, la investigación debería enfocarse en el aumento de la biosíntesis de antocianinas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, A.W., C.B.S. Tong, and D.E. Krueger. 2002. Comparison of periderm color and anthocyanins of four red potato varieties. American Journal of Potato Research 79: 249–253.

    Article  CAS  Google Scholar 

  • Francis, F.J. 1989. Food colorants: anthocyanins. Critical Reviews in Food Science and Nutrition 28: 273–314.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, V.A., J.B. Hebel, A.M. Borowki, and P.E. Hung. 1991. Ethephon and 2,4-D do not improve periderm color and may decrease yield in red-skinned ‘Norland’ potato. HortScience 26: 553–555.

    CAS  Google Scholar 

  • Fults, J.L., and M.G. Payne. 1955. The effect of 2,4-D and maleic hydrazide on sprouting, yields, and color in Red McClure potatoes. American Potato Journal 32: 451–459.

    Article  CAS  Google Scholar 

  • Fults, J.L., L.A. Schaal, N. Landblom, and M.G. Payne. 1950. Stabilization and intensification of red skin color in Red McClure potatoes by the use of the sodium salt of 2,4-dichlorophenoxyacetic acid. American Potato Journal 27: 377–395.

    Article  Google Scholar 

  • Hung, C., J.R. Murray, S.M. Ohmann, and C.B.S. Tong. 1997. Anthocyanin accumulation during potato tuber development. Journal of the American Society for Horticultural Science 122: 20–23.

    CAS  Google Scholar 

  • Jansen, F., and W. Flamme. 2006. Coloured potatoes (Solanum tuberosum L.) – anthocyanin content and tuber quality. Genetic Resources and Crop Evolution 53: 1321–1331.

    Article  CAS  Google Scholar 

  • Lachman, J., K. Hamouz, M. Šulc, M. Orsák, V. Pivec, A. Hejtmánková, P. Dvořák, and J. Čepl. 2009. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chemistry 114: 836–843.

    Article  CAS  Google Scholar 

  • Markakis, P., and L. Jurd. 1974. Anthocyanins and their stability in foods. CRC Critical Reviews in Food Technology 4: 437–456.

    Article  CAS  Google Scholar 

  • Nylund, R.E. 1956. The use of 2,4-D to intensify the skin color of Pontiac potatoes. American Potato Journal 33: 145–154.

    Article  CAS  Google Scholar 

  • Piccaglia, R., M. Marotti, and G. Baldoni. 2002. Factors influencing anthocyanin content in red cabbage (Brassica oleracea var capitata L f rubra (L) Thell). Journal of the Science of Food and Agriculture 82: 1504–1509.

    Article  CAS  Google Scholar 

  • Pourcel, L., J.-M. Routaboul, V. Cheynier, L. Lepiniec, and I. Debeaujon. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science 12: 29–36.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org. Accessed 3 December 2013.

  • Reyes, L.F., J.C. Miller Jr., and L. Cisneros-Zevallos. 2004. Environmental conditions influence the content and yield of anthocyanins and total phenolics in purple- and red-flesh potatoes during tuber development. American Journal of Potato Research 81: 187–193.

    Article  CAS  Google Scholar 

  • Rodriguez-Saona, L.E., M.M. Giusti, and R.E. Wrolstad. 1998. Anthocyanin pigment composition of red-fleshed potatoes. Journal of Food Science 63: 458–465.

    Article  CAS  Google Scholar 

  • Rosen, C.J., J.A. Roessler, P.D. Petracek, S. Engelman, and C.B.S. Tong. 2009. 2,4-dichlorophenoxyacetic acid increases peonidin derivatives in Red Norland periderm. American Journal of Potato Research 86: 15–23.

    Article  CAS  Google Scholar 

  • Sadilova, E., R. Carle, and F.C. Stintzing. 2007. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition & Food Research 51: 1461–1471.

    Article  CAS  Google Scholar 

  • Sarni, P., H. Fulcrand, V. Souillol, J.-M. Souquet, and V. Chenier. 1995. Mechanisms of anthocyanin degradation in grape must-like solutions. Journal of the Science of Food and Agriculture 69: 385–391.

    Article  CAS  Google Scholar 

  • Voss, D.H. 1992. Relating colorimeter measurement of plant color to the Royal Horticultural Society Colour chart. HortScience 27: 1256–1260.

    Google Scholar 

  • Walker, J.R.L., and P.H. Ferrar. 1998. Diphenol oxidases, enzyme-catalysed browning and plant disease resistance. Biotechnology and Genetic Engineering Reviews 15: 457–498.

    Article  CAS  PubMed  Google Scholar 

  • Waterer, D. 2010. Influence of growth regulators on skin colour and scab diseases of red-skinned potatoes. Canadian Journal of Plant Science 90: 745–753.

    Article  CAS  Google Scholar 

  • Yoruk, R., and M.R. Marshall. 2003. Physicochemical properties and function of plant polyphenol oxidase: A review. Journal of Food Biochemistry 27: 361–422.

    Article  CAS  Google Scholar 

  • Zhang, Z., X. Pang, Z. Ji, and Y. Jiang. 2001. Role of anthocyanin degradation in litchi pericarp browning. Food Chemistry 75: 217–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Nik Prenevost for greenhouse assistance, Carl Rosen for scientific discussion, and the Minnesota Experiment Station and University of Minnesota Undergraduate Research Opportunities Program for funding. ADH and MRR also thank the U.S. National Science Foundation, Plant Genome Program, grant IOS-0923960 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy B. S. Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roe, M.R., Carlson, J.L., McManimon, T.M. et al. Differential Accumulation and Degradation Of Anthocyanins In Red Norland Periderm is Dependent On Soil Type And Tuber Storage Duration. Am. J. Potato Res. 91, 696–705 (2014). https://doi.org/10.1007/s12230-014-9402-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-014-9402-z

Keywords

Navigation