Skip to main content

Advertisement

Log in

Towards an Understanding of Factors Controlling Seed Bank Composition and Longevity in the Alpine Environment

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The ability of seeds to regenerate from soil seed banks has long been recognized as a key survival strategy for plants establishing new niches in highly variable climates of alpine environments. However, the fundamental aspects of evolutionary/selective forces for seed bank development in alpine ecosystems are largely unknown. Here, we developed a model that describes dormancy, a high temperature requirement and a specific light/darkness regime at the time of seed shedding can preclude autumn germination, thus contributing to seed persistence until the next growing season. The benefits of these factors synchronising germination with the growing season are reviewed. Additionally, the importance of climatic variations of maternal environment affecting some of these factors is also discussed. It is suggested that the environmental conditions during the growing season partly control the seed persistence and seeds that fail to germinate are carried over to the next season. Species that have small (<3 mg) and round-shaped seeds tend to persist more easily in soil for over 5 years, than do the large or flat seeds. However, some large-seeded species also have the potential to establish short-term persistence bank. A literature survey reveals 88 % of the alpine seeds have a mass <3 mg. Seed size has only a weak relationship with mean germination timing (MGT) indicating that reduced persistence in large-seeded species cannot be counteracted by quicker germination, but combined effects of other factors stimulating germination remain an open area to be studied. It is proposed that long distance dispersal (LDD) is limited in most-but not all-species, primarily due to the absence of specialized dispersal structures. However, among numerous dispersal modes, most species tend to be dispersed by wind. Thus, spermatophytes of alpine environments have a greater tendency to establish seed banks and spread the risk of germination to many years, rather than being dispersed to other micro-climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  • Acharya, S. N. 1989. Germination response of two alpine grasses from the Rocky Mountains of Alberta. Canadian Journal of Plant Science 69: 1165–1177.

    Google Scholar 

  • Adzhiev, R., V. Onipchenko & D. Tekeev. 2011. Viability of buried plant seeds from alpine plant communities (Northwest Caucasus): results of a five year experiment. Zhurnal obshchei biologii 73: 453–458. Abstract in English.

    Google Scholar 

  • Allen, P. S. & S. E. Meyer. 1998. Ecological aspects of seed dormancy loss. Seed Science Research 8: 183–192.

    Google Scholar 

  • Amen, R. D. 1965. Seed dormancy in the alpine rush, Luzula Spicata L. Ecology 46: 361–364.

    Google Scholar 

  • ——— 1966. The extent and role of seed dormancy in alpine plants. Q. Rev. Biol. 41: 271–281.

    Google Scholar 

  • ——— & E. K. Bonde. 1964. Dormancy and germination in alpine Carex from the Colorado front range. Ecology 45: 881–884.

    Google Scholar 

  • Arroyo, M. T. K., L. A. Cavieres, C. Castor & A. M. Humaña. 1999. Persistent soil seed bank and standing vegetation at a high alpine site in the central Chilean Andes. Oecologia 119: 126–132.

    Google Scholar 

  • ———, ——— & A. M. Humaña. 2004. Experimental evidence of potential for persistent seed bank formation at a subantarctic alpine site in Tierra del Fuego, Chile. Annals of the Missouri Botanical Garden 91: 357–365.

    Google Scholar 

  • Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology 53: 997–1010.

    Google Scholar 

  • Bakker, J., P. Poschlod, R. Strykstra, R. Bekker & K. Thompson. 1996. Seed banks and seed dispersal: important topics in restoration ecology. Acta Botanica Neerlandica 45: 461–490.

    Google Scholar 

  • Baskin, C. C. & J. M. Baskin. 1998. Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Pr.

  • ———, O. Zackrisson & J. M. Baskin. 2002. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. American Journal of Botany 89: 486–493.

  • Baskin, J. M. & C. C. Baskin. 2004. A classification system for seed dormancy. Seed Science Research 14: 1–16.

    Google Scholar 

  • Bekker, R., J. Bakker, U. Grandin, R. Kalamees, P. Milberg, P. Poschlod, K. Thompson & J. Willems. 1998. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology 12: 834–842.

    Google Scholar 

  • Bell, K. L. & L. Bliss. 1980. Plant reproduction in a high arctic environment. Arctic and Alpine Research 12: 1–10.

    Google Scholar 

  • Bewley, J. D., K. . Bradford, H. W. Hilhorst, & H. Nonogaki 2013. Environmental Regulation of Dormancy and Germination. (3rd edition), Springer.

  • Billings, W. 1974. Adaptations and origins of alpine plants. Arctic and Alpine Research 6: 129–142.

    Google Scholar 

  • ——— & L. Bliss. 1959. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40: 388–397.

  • ——— & H. A. Mooney. 1968. The ecology of arctic and alpine plants. Biological Reviews 43: 481–529.

    Google Scholar 

  • Blionis, G. J. & D. Vokou. 2005. Reproductive attributes of Campanula populations from Mt. Olympos, Greece. Plant Ecology 178: 77–88.

    Google Scholar 

  • Bliss, L. 1958. Seed germination in arctic and alpine species. Arctic 11: 180–188.

    Google Scholar 

  • Brändel, M. & W. Schütz. 2005. Temperature effects on dormancy levels and germination in temperate forest sedges (Carex). Plant Ecology 176: 245–261.

    Google Scholar 

  • Bruun, H. H., R. Lundgren & M. Philipp. 2008. Enhancement of local species richness in tundra by seed dispersal through guts of muskox and barnacle goose. Oecologia 155: 101–110.

    PubMed  Google Scholar 

  • Bu, H., X. Chen, Y. Wang, X. Xu, K. Liu & G. Du. 2007a. Germination time, other plant traits and phylogeny in an alpine meadow on the eastern Qinghai-Tibet Plateau. Community Ecology 8: 221–227.

    Google Scholar 

  • ———, ———, X. Xu, K. Liu, P. Jia & G. Du. 2007b. Seed mass and germination in an alpine meadow on the eastern Tsinghai–Tibet plateau. Plant Ecology 191: 127–149.

    Google Scholar 

  • ———, G. Du, X. Chen, X. Xu, K. Liu & S. Wen. 2008. Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecology 195: 87–98.

  • ———, G. Z. Du, X. L. Chen, Y. Wang, X. L. Xu & K. Liu. 2009. The evolutionary significance of seed germinability in an alpine meadow on the eastern Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research 41: 97–102.

  • Bullock, J., B. C. Hill, J. Silvertown & M. Sutton. 1995. Gap colonization as a source of grassland community change: effects of gap size and grazing on the rate and mode of colonization by different species. Oikos 72: 273–282.

    Google Scholar 

  • Cain, M. L., B. G. Milligan & A. E. Strand. 2000. Long-distance seed dispersal in plant populations. American Journal of Botany 87: 1217–1227.

    CAS  PubMed  Google Scholar 

  • Carasso, V., A. Fusconi, F. R. Hay, S. Dho, B. Gallino & M. Mucciarelli. 2012. A threatened alpine species, Fritillaria tubiformis subsp moggridgei: Seed morphology and temperature regulation of embryo growth. Plant Biosystems 146: 74–83.

    Google Scholar 

  • Cavieres, L. A. 1999. Persistent seed banks: delayed seed germination models and their application to alpine environments. Revista Chilena De Historia Natural 72: 457–466.

    Google Scholar 

  • ——— & M. T. Arroyo. 2000. Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae)–altitudinal variation in the Mediterranean Andes of central Chile. Plant Ecology 149: 1–8.

    Google Scholar 

  • ——— & M. T. K. Arroyo. 2001. Persistent soil seed banks in Phacelia secunda (Hydrophyllaceae): experimental detection of variation along an altitudinal gradient in the Andes of central Chile (33 degrees S). Journal of Ecology 89: 31–39.

    Google Scholar 

  • Celedon-Neghme, C., L. A. San Martin, P. F. Victoriano & L. A. Cavieres. 2008. Legitimate seed dispersal by lizards in an alpine habitat: The case of Berberis empetrifolia (Berberidaceae) dispersed by Liolaemus belii (Tropiduridae). Acta oecologica 33: 265–271.

    Google Scholar 

  • Cerabolini, B., R. M. Ceriani, M. Caccianiga, R. D. Andreis & B. Raimondi. 2003. Seed size, shape and persistence in soil: a test on Italian flora from Alps to Mediterranean coasts. Seed Science Research 13: 75–85.

    Google Scholar 

  • Chambers, J. C., J. A. MacMahon & J. H. Haefner. 1991. Seed entrapment in alpine ecosystems: effects of soil particle size and diaspore morphology. Ecology 72: 1668–1677.

    Google Scholar 

  • ——— & ———. 1994. A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annual Review of Ecology and Systematics 25: 263–292.

    Google Scholar 

  • ——— 1995. Disturbance, life history strategies, and seed fates in alpine herbfield communities. American Journal of Botany 82: 421–433.

    Google Scholar 

  • ——— 2000. Seed movements and seedling fates in disturbed sagebrush steppe ecosystems: implications for restoration. Ecological Applications 10: 1400–1413.

    Google Scholar 

  • Chu, C. J., Y. S. Wang, G. Z. Du, F. T. Maestre, Y.-J. Luo & G. Wang. 2007. On the balance between niche and neutral processes as drivers of community structure along a successional gradient: insights from alpine and sub-alpine meadow communities. Annals of Botany 100: 807–812.

    PubMed Central  PubMed  Google Scholar 

  • Clebsch, E. E. & W. Billings. 1976. Seed germination and vivipary from a latitudinal series of populations of the arctic-alpine grass Trisetum spicatum. Arctic and Alpine Research 8: 255–262.

    Google Scholar 

  • Coomes, D. A., M. Rees, P. J. Grubb & L. Turnbull. 2002. Are differences in seed mass among species important in structuring plant communities? Evidence from analyses of spatial and temporal variation in dune‐annual populations. Oikos 96: 421–432.

    Google Scholar 

  • Dainese, M. & T. Sitzia. 2013. Assessing the influence of environmental gradients on seed mass variation in mountain grasslands using a spatial phylogenetic filtering approach. Perspectives in Plant Ecology, Evolution and Systematics 15: 12–19.

    Google Scholar 

  • Danvind, M. & C. Nilsson. 1997. Seed floating ability and distribution of alpine plants along a northern Swedish river. Journal of Vegetation Science 8: 271–276.

    Google Scholar 

  • Dar, A. R., Z. Reshi & G. H. Dar. 2009. Germination studies on three critically endangered endemic angiosperm species of the Kashmir Himalaya, India. Plant Ecology 200: 105–115.

    Google Scholar 

  • Densmore, R. & J. Zasada. 1983. Seed dispersal and dormancy patterns in northern willows: ecological and evolutionary significance. Canadian Journal of Botany 61: 3207–3216.

    Google Scholar 

  • ——— 1997. Effect of day length on germination of seeds collected in Alaska. American Journal of Botany 84: 274–274.

    CAS  PubMed  Google Scholar 

  • Dorne, A. J. 1981. Variation in seed germination inhibition of Chenopodium bonus-henricus in relation to altitude of plant growth. Canadian Journal of Botany 59: 1893–1901.

    Google Scholar 

  • Elkington, T. 1971. Biological flora of the British Isles: Dryas Octopetala L. Journal of Ecology 59: 887–905.

    Google Scholar 

  • Fenner, M. & K. Thompson. 2005. The ecology of seeds. Cambridge Univ Pr.

  • Fernandez-Pascual, E., B. Jimenez-Alfaro, A. I. Garcia-Torrico, F. Perez-Garcia & T. E. Diaz. 2012. Germination ecology of the perennial Centaurium somedanum, a specialist species of mountain springs. Seed Science Research 22: 199–205.

    Google Scholar 

  • Finch-Savage, W. E. & G. Leubner-Metzger. 2006. Seed dormancy and the control of germination. New Physiologist 171: 501–523.

    CAS  Google Scholar 

  • Forbis, T. A. 2003. Seedling demography in an alpine ecosystem. American Journal of Botany 90: 1197–1206.

    PubMed  Google Scholar 

  • ——— & P. K. Diggle. 2001. Subnivean embryo development in the alpine herb Caltha leptosepala (Ranunculaceae). Canadian Journal of Botany 79: 635–642.

    Google Scholar 

  • Frei, E. S., J. F. Scheepens & J. Stoecklin. 2012. Dispersal and microsite limitation of a rare alpine plant. Plant Ecology 213: 395–406.

    Google Scholar 

  • Funes, G., S. Basconcelo, S. Díaz & M. Cabido. 1999. Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina. Seed Science Research 9: 341–345.

    Google Scholar 

  • Garnock‐Jones, P. J. & D. G. Lloyd. 2004. A taxonomic revision of Parahebe (Plantaginaceae) in New Zealand. New Zealand Journal of Botany 42: 181–232.

    Google Scholar 

  • Gilbert, B., W. F. Laurance, E. G. Leigh Jr & H. E. Nascimento 2006. Can Neutral Theory Predict the Responses of Amazonian Tree Communities to Forest Fragmentation?. The American Naturalist 168: 304–317.

  • Giménez-Benavides, L., A. Escudero & F. Pérez-García. 2005. Seed germination of high mountain Mediterranean species: altitudinal, interpopulation and interannual variability. Ecological Research 20: 433–444.

    Google Scholar 

  • Glaser, P. H. 1981. Transport and deposition of leaves and seeds on tundra: a late-glacial analog. Arctic and Alpine Research 13: 173–182.

    Google Scholar 

  • Gottfried, M., H. Pauli, K. Reiter & G. Grabherr. 2001. A fine‐scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Diversity and Distributions 5: 241–251.

    Google Scholar 

  • ———, ———, A. Futschik, M. Akhalkatsi, P. Barancok, J. L. Benito Alonso, G. Coldea, J. Dick, B. Erschbamer, M. R. Fernandez Calzado, G. Kazakis, J. Krajci, P. Larsson, M. Mallaun, O. Michelsen, D. Moiseev, P. Moiseev, U. Molau, A. Merzouki, L. Nagy, G. Nakhutsrishvili, B. Pedersen, G. Pelino, M. Puscas, G. Rossi, A. Stanisci, J.-P. Theurillat, M. Tomaselli, L. Villar, P. Vittoz, I. Vogiatzakis & G. Grabherr. 2012. Continent-wide response of mountain vegetation to climate change. Nature Clim. Change 2: 111–115.

    Google Scholar 

  • Graae, B. J., I. G. Alsos & R. Ejrnaes. 2008. The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites. Plant Ecology 198: 275–284.

    Google Scholar 

  • Greene, D. & E. Johnson. 1997. Secondary dispersal of tree seeds on snow. Journal of Ecology 85: 329–340.

    Google Scholar 

  • Güleryüz, G., S. Kırmızı, H. Arslan & F. S. Sakar. 2011. Dormancy and germination in Stachys germanica L. subsp. bithynica (Boiss.) Bhattacharjee seeds: Effects of short-time moist chilling and plant growth regulators. Flora-Morphology, Distribution, Functional Ecology of Plants 206: 943–948.

    Google Scholar 

  • Guo, H., S. J. Mazer & G. Du. 2010. Geographic variation in seed mass within and among nine species of Pedicularis (Orobanchaceae): effects of elevation, plant size and seed number per fruit. Journal of Ecology 98: 1232–1242.

    Google Scholar 

  • Haggas, L., R. W. Brown & R. S. Johnston. 1987. Light requirement for seed germination of Payson sedge. Journal of range management 40: 180–184.

    Google Scholar 

  • Heide, O. M. & Y. Gauslaa. 1999. Developmental strategies of Koenigia islandica, a high-arctic annual plant. Ecography 22: 637–642.

    Google Scholar 

  • Hölzel, N. & A. Otte. 2004. Ecological significance of seed germination characteristics in flood-meadow species. Flora-Morphology, Distribution, Functional Ecology of Plants 199: 12–24.

    Google Scholar 

  • Hu, X., T. Li, J. Wang, Y. Wang, C. C. Baskin & J. M. Baskin. 2013. Seed dormancy in four Tibetan Plateau Vicia species and characterization of physiological changes in response of seeds to environmental factors. Seed Science Research 23: 133–140.

    Google Scholar 

  • Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press.

  • Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent? Trends in ecology & evolution 15: 56–61.

    Google Scholar 

  • Jakobsson, A. & O. Eriksson. 2000. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88: 494–502.

    Google Scholar 

  • Jankowska-Blaszczuk, M. & M. Daws. 2007. Impact of red: far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Functional Ecology 21: 1055–1062.

    Google Scholar 

  • Jurado, E. & J. Flores. 2005. Is seed dormancy under environmental control or bound to plant traits? Journal of Vegetation Science 16: 559–564.

    Google Scholar 

  • Kaye, T. N. 1997. Seed dormancy in high elevation plants: implications for ecology and restoration. Pp 115–120. In: T. N. Kaye, A. Liston, R. Love, D. Luoma, R. Meinke, & M. Wilson (eds). Conservation and management of native Plants and Fungi. Native Plant Society of Oregon, Corvallis.

    Google Scholar 

  • Kibe, T. & T. Masuzawa. 1994. Seed germination and seedling growth of Carex doenitzii growing on alpine zone of Mt. Fuji. Journal of Plant Research 107: 23–27.

    Google Scholar 

  • Klug-Pümpel, B. & G. Scharfetter-Lehrl. 2008. Soil diaspore reserves above the timberline in the Austrian Alps. Flora-Morphology, Distribution, Functional Ecology of Plants 203: 292–303.

    Google Scholar 

  • Komatsu, T., T. Itino & S. Ueda. 2014. First report of seed dispersal by ants in Dicentra peregrina (Papaveraceae), an alpine plant in the Japanese Alps. Entomological Science. doi:10.1111/ens.12110.

    Google Scholar 

  • Körner, C. 1999. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, New York.

    Google Scholar 

  • ——— 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Verlag

  • Larsen, H. & K. C. Burns. 2012. Seed dispersal effectiveness increases with body size in New Zealand alpine scree weta (Deinacrida connectens). Austral Ecology 37: 800–806.

    Google Scholar 

  • Leishman, M. & M. Westoby. 1998. Seed size and shape are not related to persistence in soil in Australia in the same way as in Britain. Functional Ecology 12: 480–485.

    Google Scholar 

  • ———, M. Westoby & E. Jurado. 1995. Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology 83: 517–530.

  • ———, I. J. Wright, A. T. Moles & Westoby, M. 2000 The evolutionary ecology of seed size. pp 31–57 in Fenner, M. (Ed) Seeds: the ecology of regeneration in plant communities, CAB International.

  • ——— & B. R. Murray. 2001. The relationship between seed size and abundance in plant communities: model predictions and observed patterns. Oikos 94: 151–161.

  • Liebst, B. & J. Schneller. 2008. Seed dormancy and germination behaviour in two Euphrasia species (Orobanchaceae) occurring in the Swiss Alps. Botanical Journal of the Linnean Society 156: 649–656.

    Google Scholar 

  • Lindgren, Å., O. Eriksson & J. Moen. 2007. The impact of disturbance and seed availability on germination of alpine vegetation in the Scandinavian mountains. Arctic, Antarctic, and Alpine Research 39: 449–454.

    Google Scholar 

  • Liu, K., J. M. Baskin, C. C. Baskin, H. Bu, M. Liu, W. Liu & G. Du. 2011. Effect of storage conditions on germination of seeds of 489 species from high elevation grasslands of the eastern Tibet Plateau and some implications for climate change. American Journal of Botany 98: 12–19.

    PubMed  Google Scholar 

  • ———, ———, ———, ———, G. Du & M. Ma. 2013. Effect of diurnal fluctuating versus constant temperatures on germination of 445 species from the Eastern Tibet Plateau. PloS one 8: e69364.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorite, J., A. M. Ruiz-girel & J. Castro. 2007. Patterns of seed germination in Mediterranean mountains: study on 37 endemic or rare species from Sierra Nevada, SE Spain. Candollea 62(1): 1–12.

    Google Scholar 

  • Lucas-Borja, M. E., T. F. Fonseca, J. L. Lousada, P. Silva-Santos, E. Martinez Garcia & M. Andres Abellan. 2012. Natural regeneration of Spanish black pine Pinus nigra Arn. ssp salzmannii (Dunal) Franco at contrasting altitudes in a Mediterranean mountain area. Ecological Research 27: 913–921.

    Google Scholar 

  • Lütz, C. 2011. Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies. Springer.

  • Ma, M., X. Zhou & G. Du. 2010a. Role of soil seed bank along a disturbance gradient in an alpine meadow on the Tibet plateau. Flora-Morphology, Distribution, Functional Ecology of Plants 205: 128–134.

    Google Scholar 

  • ———, ———, G. Wang, Z. Ma & G. Du. 2010b. Seasonal dynamics in alpine meadow seed banksalong an altitudinal gradient on the Tibetan Plateau. Plant and soil 336: 291–302.

    CAS  Google Scholar 

  • ———, ——— & G. Du. 2011. Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau. Plant and soil 346: 1–10.

    Google Scholar 

  • ———, ———, W. Qi, K. Liu, P. Jia & G. Du. 2013. Seasonal dynamics of the plant community and soil seed bank along a successional gradient in a subalpine meadow on the Tibetan Plateau. PloS one 8: e80220.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marcante, S., A. Sierra‐Almeida, J. P. Spindelböck, B. Erschbamer & G. Neuner. 2012. Frost as a limiting factor for recruitment and establishment of early development stages in an alpine glacier foreland? Journal of Vegetation Science 23: 858–868.

    Google Scholar 

  • Marchand, P. J. & D. A. Roach. 1980. Reproductive strategies of pioneering alpine species: seed production, dispersal, and germination. Arctic and Alpine Research 12: 137–146.

    Google Scholar 

  • Mariko, S., H. Koizumi, J.-I. Suzuki & A. Furukawa. 1993. Altitudinal variations in germination and growth responses of Reynoutria japonica populations on Mt Fuji to a controlled thermal environment. Ecological Research 8: 27–34.

    Google Scholar 

  • Matlack, G. 1989. Secondary dispersal of seed across snow in Betula lenta, a gap-colonizing tree species. The Journal of Ecology 77: 853–869.

    Google Scholar 

  • Mazer, S. J. 1989. Ecological, taxonomic and life history correlates of seed mass among Indiana dune angiosperms. Ecological Monograph 59: 153–175.

    Google Scholar 

  • McDonough, W. T. 1970. Germination of 21 species collected from a high-elevation rangeland in Utah. American Midland Naturalist 84: 551–554.

    Google Scholar 

  • McGill, B. J. 2003. A test of the unified neutral theory of biodiversity. Nature 422: 881–885.

    CAS  PubMed  Google Scholar 

  • McGraw, J., M. Vavrek & C. Bennington. 1991. Ecological genetic variation in seed banks I. Establishment of a time transect. The Journal of Ecology 79: 617–625.

    Google Scholar 

  • ——— & M. C. Vavrek 1989. The Role of Buried Viable Seeds in Arctic and Alpine plant communities in Leck, M.A., Parker, V.T. and Simpson, R.L. (Eds) Ecology of soil seed banks, Academic Press.

  • Meyer, S., S. Kitchen & S. Carlson. 1995. Seed germination timing patterns in intermountain Penstemon (Scrophulariaceae). American Journal of Botany 82: 377–389.

    Google Scholar 

  • Meyer, S. E. & S. B. Monsen. 1991. Habitat-correlated variation in mountain big sagebrush (Artemisia tridentata ssp. vaseyana) seed germination patterns. Ecology 72: 739–742.

    Google Scholar 

  • ——— & S. G. Kitchen. 1994a. Life history variation in blue flax (Linum perenne: Linaceae): seed germination phenology. American Journal of Botany 81: 528–535.

    Google Scholar 

  • ——— & ———. 1994b. Habitat-correlated variation in seed germination response to chilling in Penstemon Section Glabri (Scrophulariaceae). American Midland Naturalist 132: 349–365.

    Google Scholar 

  • Milberg, P., L. Andersson & K. Thompson. 2000. Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Science Research 10: 99–104.

    Google Scholar 

  • Molau, U. & E. L. Larsson. 2000. Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Canadian Journal of Botany 78: 728–747.

    Google Scholar 

  • Moles, A. T., D. W. Hodson & C. J. Webb. 2000. Seed size and shape and persistence in the soil in the New Zealand flora. Oikos 89: 541–545.

    Google Scholar 

  • ——— & M. Westoby. 2004. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology 92: 372–383.

    Google Scholar 

  • Mondoni, A., M. I. Daws, J. Belotti & G. Rossi. 2009. Germination requirements of the alpine endemic Silene elisabethae Jan: effects of cold stratification, light and GA(3). Seed Science and technology 37: 79–87.

  • ———, G. Rossi, S. Orsenigo & R. J. Probert. 2012. Climate warming could shift the timing of seed germination in alpine plants. Annals of Botany 110: 155–164.

    PubMed Central  PubMed  Google Scholar 

  • Mooney, H. A. & W. Billings. 1961. Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecological Monographs 31: 1–29.

    Google Scholar 

  • Muñoz, A. A. & M. T. K. Arroyo. 2002. Postdispersal seed predation on Sisyrinchium arenarium (Iridaceae) at two elevations in the central Chilean Andes. Arctic, Antarctic, and Alpine Research 34: 178–184.

    Google Scholar 

  • ——— & L. A. Cavieres. 2006. A multi-species assessment of post-dispersal seed predation in the central Chilean Andes. Annals of Botany 98: 193–201.

    PubMed Central  PubMed  Google Scholar 

  • Nishitani, S. & T. Masuzawa. 1996. Germination characteristics of two species of Polygonum in relation to their altitudinal distribution on Mt. Fuji, Japan. Arctic and Alpine Research 28: 104–110.

    Google Scholar 

  • Norden, N., M. I. Daws, C. Antoine, M. A. Gonzalez, N. C. Garwood & J. Chave. 2009. The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology 23: 203–210.

    Google Scholar 

  • Novak, J., C. Wawrosch, C. Schmiderer, C. M. Franz & B. Kopp. 2011. Germination responses of Peucedanum ostruthium (Apiaceae) to genotype, light, temperature and gibberellic acid. Seed Science and technology 39: 552–558.

    Google Scholar 

  • Ozinga, W. A., R. M. Bekker, J. H. J. Schaminee & J. M. Van Groenendael. 2004. Dispersal potential in plant communities depends on environmental conditions. Journal of Ecology 92: 767–777.

    Google Scholar 

  • Parolo, G. & G. Rossi. 2008. Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology 9: 100–107.

    Google Scholar 

  • Pauli, H., M. Gottfried & G. Grabherr. 1996. Effects of climate change on mountain ecosystems–upward shifting of alpine plants. World Resource Review 8: 382–390.

    Google Scholar 

  • ———, ——— & ——— (eds). 2001. High summits of the Alps in a changing climate. Kluwer Academic/Plenum Publ, New York.

    Google Scholar 

  • Peco, B., J. Traba, C. Levassor, A. M. Sánchez & F. M. Azcárate. 2003. Seed size, shape and persistence in dry Mediterranean grass and scrublands. Seed Science Research 13: 87–95.

    Google Scholar 

  • Pluess, A., W. Schütz & J. Stöcklin. 2005. Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species. Oecologia 144: 55–61.

    PubMed  Google Scholar 

  • Pons, T. L. & M. Fenner 2000 Seed responses to light. pp 237–260 in Fenner, M. (Ed) Seeds: the ecology of regeneration in plant communities, CABI

  • Pufal, G., K. G. Ryan & P. Garnock-Jones. 2010. Hygrochastic capsule dehiscence in New Zealand alpine veronica (Plantaginaceae). American Journal of Botany 97: 1413–1423.

    PubMed  Google Scholar 

  • Rees, M. & M. J. Long. 1992. Germination biology and the ecology of annual plants. American Naturalist 139: 484–508.

    Google Scholar 

  • ——— 1996. Evolutionary ecology of seed dormancy and seed size. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1299–1308.

    Google Scholar 

  • Reynolds, D. N. 1984. Alpine annual plants: phenology, germination, photosynthesis, and growth of three Rocky Mountain species. Ecology 65: 759–766.

    Google Scholar 

  • Royal Botanic Gardens Kew Seed Information Database (SID). Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (March 2014).

  • Sayers, R. L. & R. T. Ward. 1966. Germination responses in alpine species. Botanical Gazette 127: 11–16.

    Google Scholar 

  • Scherff, E., C. Galen & M. Stanton. 1994. Seed dispersal, seedling survival and habitat affinity in a snowbed plant: limits to the distribution of the snow buttercup, Ranunculus adoneus. Oikos 69: 405–413.

    Google Scholar 

  • Schütz, W. & G. Rave. 1999. The effect of cold stratification and light on the seed germination of temperate sedges (Carex) from various habitats and implications for regenerative strategies. Plant Ecology 144: 215–230.

    Google Scholar 

  • ——— 2002. Dormancy characteristics and germination timing in two alpine Carex species. Basic and Applied Ecology 3: 125–134.

    Google Scholar 

  • Schwienbacher, E., S. Marcante & B. Erschbamer. 2010. Alpine species seed longevity in the soil in relation to seed size and shape-A 5-year burial experiment in the Central Alps. Flora-Morphology, Distribution, Functional Ecology of Plants 205: 19–25.

    Google Scholar 

  • ———, J. A. Navarro-Cano, G. Neuner & B. Erschbamer. 2011. Seed dormancy in alpine species. Flora-Morphology, Distribution, Functional Ecology of Plants 206: 845–856.

    Google Scholar 

  • Shimono, Y. & G. Kudo. 2003. Intraspecific variations in seedling emergence and survival of Potentilla matsumurae (Rosaceae) between alpine fellfield and snowbed habitats. Annals of Botany 91: 21–29.

    PubMed Central  PubMed  Google Scholar 

  • ——— & ———. 2005. Comparisons of germination traits of alpine plants between fellfield and snowbed habitats. Ecological Research 20: 189–197.

    Google Scholar 

  • Sommerville, K. D., A. J. Martyn & C. A. Offord. 2013. Can seed characteristics or species distribution be used to predict the stratification requirements of herbs in the Australian Alps? Botanical Journal of the Linnean Society 172: 187–204.

    Google Scholar 

  • Stinson, K. A. 2004. Natural selection favors rapid reproductive phenology in Potentilla pulcherrima (Rosaceae) at opposite ends of a subalpine snowmelt gradient. American Journal of Botany 91: 531–539.

  • Stöcklin, J. & E. Bäumler. 1996. Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. Journal of Vegetation Science 7: 45–56.

    Google Scholar 

  • Tackenberg, O., P. Poschlod & S. Bonn. 2003. Assessment of wind dispersal potential in plant species. Ecological Monographs 73: 191–205.

    Google Scholar 

  • ——— & J. Stöcklin. 2008. Wind dispersal of alpine plant species: a comparison with lowland species. Journal of Vegetation Science 19: 109–118.

    Google Scholar 

  • Takahashi, K. & Y. Miyajima. 2010. Effects of roads on alpine and subalpine plant species distribution along an altitudinal gradient on Mount Norikura, central Japan. Journal of Plant Research 123: 741–749.

    PubMed  Google Scholar 

  • Thompson, K. 1987. Seeds and seed banks. New Phytologist 106: 23–34.

    Google Scholar 

  • ———, S. Band & J. Hodgson. 1993. Seed size and shape predict persistence in soil. Functional Ecology 7: 236–241.

    Google Scholar 

  • ———, J. P. Bakker & R.M. Bekker. 1997. The soil seed banks of North West Europe: methodology, density and longevity. Cambridge Univ Pr.

  • ——— 2000 The functional ecology of soil seed banks. pp 215–235 in Fenner, M. (Ed) Seeds: the ecology of regeneration in plant communities, CABI

  • ———, A. Jalili, J. G. Hodgson, B. Hamzeh’ee, Y. Asri, S. Shaw, A. Shirvany, S. Yazdani, M. Khoshnevis & F. Zarrinkamar. 2001. Seed size, shape and persistence in the soil in an Iranian flora. Seed Science Research 11: 345–356.

    Google Scholar 

  • ———, R. M. Ceriani, J. P. Bakker & R. M. Bekker. 2003. Are seed dormancy and persistence in soil related? Seed Science Research 13: 97–100.

    Google Scholar 

  • Van der Pijl, L. 1982. Principles of seed dispersal in higher plants. Principles of seed dispersal in higher plants.

  • Vera, M. 1997. Effects of altitude and seed size on germination and seedling survival of heathland plants in north Spain. Plant Ecology 133: 101–106.

    Google Scholar 

  • Vleeshouwers, L., H. Bouwmeester & C. Karssen. 1995. Redefining seed dormancy: an attempt to integrate physiology and ecology. Journal of Ecology 83: 1031–1037.

    Google Scholar 

  • Wagner, I. & A. M. Simons. 2008. Intraspecific divergence in seed germination traits between high- and low-latitude populations of the arctic-alpine annual Koenigia islandica. Arctic Antarctic and Alpine Research 40: 233–239.

    Google Scholar 

  • ——— & ———. 2009. Divergence in germination traits among arctic and alpine populations of Koenigia islandica: light requirements. Plant Ecology 204: 145–153.

    Google Scholar 

  • Wagner, J. & E. Mitterhofer. 1998. Phenology, seed development, and reproductive success of an alpine population of Gentianella germanica in climatically varying years. Botanica Acta 111: 159–166.

    Google Scholar 

  • Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    CAS  PubMed  Google Scholar 

  • ———, S. Beißner & C. A. Burga. 2009. Trends in the upward shift of alpine plants. Journal of Vegetation Science 16: 541–548.

    Google Scholar 

  • Wang, B., G. Wang & J. Chen. 2012. Scatter-hoarding rodents use different foraging strategies for seeds from different plant species. Plant Ecology 213: 1329–1336.

    Google Scholar 

  • Ware, C., D. M. Bergstrom, E. Muller & I. G. Alsos. 2012. Humans introduce viable seeds to the Arctic on footwear. Biological Invasions 14: 567–577.

    Google Scholar 

  • Weiblen, G. D. & J. D. Thomson. 1995. Seed dispersal in Erythronium grandiflorum (Liliaceae). Oecologia 102: 211–219.

    Google Scholar 

  • Welling, P. & K. Laine. 2000. Characteristics of the seedling flora in alpine vegetation, subarctic Finland, I. Seedling densities in 15 plant communities. Helsinki: Societas Biologica Fennica 37: 69–76.

    Google Scholar 

  • ———, A. Tolvanen & K. Laine. 2004. The alpine soil seed bank in relation to field seedlings and standing vegetation in subarctic Finland. Arctic, Antarctic, and Alpine Research 36: 229–238.

    Google Scholar 

  • Whinam, J. & N. Chilcott. 1999. Impacts of trampling on alpine environments in central tasmania. Journal of Environmental Management 12: 205–220.

    Google Scholar 

  • Williams, R. 1987. Patterns of air temperature and accumulation of snow in subalpine heathlands and grasslands on the Bogong High Plains, Victoria. Australian journal of ecology 12: 153–163.

    Google Scholar 

  • Willson, M. F., B. Rice & M. Westoby. 1990. Seed dispersal spectra: a comparison of temperate plant communities. Journal of Vegetation Science 1: 547–562.

    Google Scholar 

  • Wu, G.-L., G.-Z. Du & Z.-H. Shi. 2013. Germination strategies of 20 alpine species with varying seed mass and light availability. Australian Journal of Botany 61: 404–411.

    Google Scholar 

  • Young, L. M., D. Kelly & X. J. Nelson. 2012. Alpine flora may depend on declining frugivorous parrot for seed dispersal. Biological Conservation 147: 133–142.

    Google Scholar 

  • Xu, J., W. Li, C. Zhang, W. Liu & G. Du. 2014. Variation in seed germination of 134 common species on the Eastern Tibetan plateau: phylogenetic, life history and environmental correlates. Plos one 9: e98601.

    PubMed Central  PubMed  Google Scholar 

  • Yu, S., M. Sternberg, P. Kutiel & H. Chen. 2007. Seed mass, shape, and persistence in the soil seed bank of Israeli coastal sand dune flora. Evolutionary Ecology Research 9: 325–340.

    Google Scholar 

  • Yu, X., C. Xu, F. Wang, Z. Shang & R. Long. 2012. Recovery and germinability of seeds ingested by yaks and Tibetan sheep could have important effects on the population dynamics of alpine meadow plants on the Qinghai-Tibetan Plateau. Rangeland Journal 34: 249–255.

    Google Scholar 

  • Zhang, H., B. Gilbert, X. Zhang & S. Zhou. 2012. Community assembly along a successional gradient in sub-alpine meadows of the Qinghai-Tibetan Plateau, China. Oikos 122: 952–960.

    Google Scholar 

  • Zhang, S. T., G. Z. Du & J. K. Chen. 2004. Seed size in relation to phylogeny, growth form and longevity in a subalpine meadow on the East of the Tibetan plateau, China. Folia Geobotanica 39: 129–142.

    Google Scholar 

  • Zhao, L. P., G. L. Wu & J. M. Cheng. 2011. Seed mass and shape are related to persistence in a sandy soil in northern China. Seed Science Research 21: 47–53.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Carol C. Baskin, Prof. Mary A. Leck and two anonymous reviewers for critically reading and suggesting numerous improvements on an earlier version of this manuscript. It is a pleasure to thank Xiao Qun for her help in preparing Table 4 and verifying plant names throughout. We are indeed thankful to the financial support by NSFC (Grant No.51076108) and the program for Professor of Eastern Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh K. Jaganathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaganathan, G.K., Dalrymple, S.E. & Liu, B. Towards an Understanding of Factors Controlling Seed Bank Composition and Longevity in the Alpine Environment. Bot. Rev. 81, 70–103 (2015). https://doi.org/10.1007/s12229-014-9150-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-014-9150-2

Keywords

Navigation