Skip to main content

Advertisement

Log in

Distribution, diversity, and traits of native, exotic, and invasive climbing plants in Michigan

  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

We compiled records of all the known climbing plant species both native and non-native in the state of Michigan, USA. County-level distributions and a broad suite of traits related to ecological and reproductive success were individually scored for each species. Non-native climbing species were subdivided and classified as either invasive or exotic. A total of 103 climbing species are present in the state, 50% of which are native. We classified only ten climbing species as currently invasive: of those 40% are woody, compared to 31% woody native and 33% woody exotic species. Our research asks whether latitude is correlated with either species richness or mode of dispersal among climbers. We also asked whether sexual system, dispersal mode, and unit of dispersal are different in native versus non-native climbers, and whether the dispersal mode of common trees is different from that of common climbers. We found latitudinally bimodal species richness for all classes of climbers, which we propose is due to collecting effort, growing season length, and human population density. We found surprisingly high numbers of climbing species at northern latitudes, in spite of harsh winter conditions, especially for climbing plants whose vascular tissues are compromised by freezing temperatures. Native species are significantly more often dioecious (27%) than non-natives (6%); however one of the woody invasive species, Celastrus orbiculatus, is functionally dioecious. Collectively, climbers include more abiotically dispersed species (62%) than biotically dispersed (38%). However, the 18 most common native species (found in more than 40 of 83 counties) are 61% biotically dispersed. Native woody climbers are 81% biotically dispersed, whereas native trees include 38–40% biotically dispersed species. Native climbing species are more often dispersed as fruits (52%) than are non-native climbers (37%), which are more often dispersed as seeds. Climbing mechanism is generally achieved by stem apical twining in both native and non-native species; however when tendrils are produced, native species produce similar proportions of leaf, petiole, and axillary tendrils, while non-native species largely produce leaf tendrils, a mechanism that is phylogenetically concentrated in the crop and crop-weed family, Fabaceae. Based on traits of the ten currently invasive climbing species in Michigan, we identify ten exotic species that are most likely to become invasive, most of which are perennials, hermaphroditic, with abiotically dispersed fruits, and modified climbing organs. Climbing species add significantly to biodiversity in Michigan, comprising 3.6% of the 2858 vascular plants. Climbing guilds in the temperate zone are more morphologically diverse and species rich than broadly recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

Literature Cited

  • Addo-Fordjour, P., P. El Duah & D.K.K. Agbesi. 2013. Factors influencing liana species richness and structure following anthropogenic disturbance in a tropical forest, Ghana. International Scholarly Research Notices Forestry 2013, Article ID 920370, 11 pages.

  • Ahern, R. G., D. A. Landis, A. A. Reznicek & D. W. Schemske. 2010. Spread of exotic plants in the landscape: the growth habit and history of invasiveness. Biological Invasions 12: 3157–3169.

    Article  Google Scholar 

  • Austin, D. F. 2000. Bindweed (Convolvulus arvensis, Convolvulaceae) in North America, from medicine to menace. Journal of the Torrey Botanical Society 127(2): 172–177.

    Article  Google Scholar 

  • Baker, H. G. 1955. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9(3): 347–349.

    Article  Google Scholar 

  • ———. 1967. Support for Baker's law — as a rule. Evolution 21(4): 853–856.

  • ———. 1974. The evolution of weeds. Annual Review of Ecology and Systematics 5: 1–24.

  • Banasiak S. E. & S. J. Meiners. 2009. Long term dynamics of Rosa multiflora in a successional system. Biological Invasions 11: 215–224.

    Article  Google Scholar 

  • Barnes, B. V. & W. H. Wagner. 1992. Michigan Trees: A guide to the trees of Michigan and the Great Lakes Region. The University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Bawa, K. 1980. Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics 11: 15–39.

    Article  Google Scholar 

  • Billington, C. 1943. Shrubs of Michigan. Cranbrook Institute of Science, Bloomfield Hills.

    Google Scholar 

  • Burnham, R.J. & C. Revilla-Minaya. 2011. Phylogenetic influence on twining chirality in lianas from Amazonian Peru. Annals of the Missouri Botanical Garden 98(2): 196–205.

    Article  Google Scholar 

  • Bush, M. B., R. J. Whittaker & T. Partomihardjo. 1995. Colonization and succession on Krakatau: analysis of the guild of vining plants. Biotropica 27(3): 355–372.

    Article  Google Scholar 

  • Canham, C. D. & R. Q. Thomas. 2010. Frequency, not relative abundance, of temperate tree species varies along climate gradients in eastern North America. Ecology 91: 3433–3440.

    Article  PubMed  Google Scholar 

  • Carrasco-Urra, F. & E. Gianoli. 2009. Abundance of climbing plants in a southern temperate rain forest: host tree characteristics or light availability? Journal of Vegetation Science 20: 1155-1162.

    Article  Google Scholar 

  • Chittibabu, C. V. & N. Parthasarathy. 2001. Liana diversity and host relationships in a tropical evergreen forest in the Indian Eastern Ghats. Ecological Research 16: 519–529.

    Article  Google Scholar 

  • Cushman, J. H. & K. A. Gaffney. 2010. Community-level consequences of invasion: impacts of exotic clonal plants on riparian vegetation. Biological Invasions 12(8): 2765–2776.

    Article  Google Scholar 

  • DeFelice, M. S. 2002. Catchweed bedstraw or cleavers, Galium aparine L.—a very “sticky” subject. Weed Technology 16(2): 467–472.

    Article  Google Scholar 

  • Del Tredici, P. 2014. Untangling the twisted tale of oriental bittersweet. Arnoldia (Jamaica Plain) 71(3): 2–18.

    Google Scholar 

  • DeWalt, S. J., S. A. Schnitzer & J. S. Denslow. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology 16:1–19.

    Article  Google Scholar 

  • Dillenburg, L. R., D. F. Whigham, A. H. Teramura & I. N. Forseth.1993a. Effects of vine competition on availability of light, water, and nitrogen to a tree host (Liquidambar styraciflua). American Journal of Botany 80(3): 244-252.

    Article  CAS  Google Scholar 

  • ———, ———, ——— & ———.1993b. Effects of below- and aboveground competition from the vines Lonicera japonica and Parthenocissus quinquefolia on the growth of the tree host Liquidambar styraciflua. Oecologia 93: 48–54.

  • ———, A. H. Teramura, I. N. Forseth & D. F. Whigham. 1995. Photosynthetic and biomass allocation responses of Liquidambar styraciflua (Hamamelidaceae) to vine competition. American Journal of Botany 82(4): 454–461.

  • Duncan, W. H. 1975. Woody vines of the southeastern United States. University of Georgia Press, Athens, GA.

    Google Scholar 

  • Durigon, J., S. T. S. Miotto & E. Gianoli. 2014. Distribution and traits of climbing plants in subtropical and temperate South America. Journal of Vegetation Science 25: 1484–1492.

    Article  Google Scholar 

  • Eichenlaub, V. L., J. R. Harman, F. V. Nurnberger & H. J Stolle. 1990. The Climatic Atlas of Michigan. University of Notre Dame Press: Notre Dame, IN.

    Google Scholar 

  • Fan, Z. F., W. K. Moser, M. H. Hansen & M. D. Nelson. 2013. Regional patterns of major nonnative invasive plants and associated factors in Upper Midwest forest. Forest Science 59(1): 38–49.

    Article  Google Scholar 

  • Farah, A. F. & M. A. Al-Abdulsalam. 2004. Effect of field dodder (Cuscuta campestris Yuncker) on some legume crops. Scientific Journal of King Faisal University (Basic and Applied Sciences) 5(1): 103–112

    Google Scholar 

  • Forseth, I. N. & A.F. Innis. 2004. Kudzu (Pueraria montana): History, physiology, and ecology combine to make a major ecosystem threat. Critical Reviews in Plant Sciences 23(5): 401–413

    Article  Google Scholar 

  • Gallagher, R. V. & M. R. Leishman. 2012. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39: 1757–1771.

    Article  Google Scholar 

  • ———, ——— & A. T. Moles. 2011. Traits and ecological strategies of Australian tropical and temperate climbing plants. Journal of Biogeography 38: 828–839.

  • Gentry, A. H. 1982. Patterns of neotropical plant species diversity. Evolutionary Biology 15: 1–84.

    Article  Google Scholar 

  • ———. 1983. Dispersal ecology and diversity in Neotropical forest communities. In: K. Kubitzki (ed.) Dispersal and Distribution, Sonderbände das Naturwissenschaftlichen Vereins in Hamburg 7: 303–314.

  • ———. 1991a. The distribution and evolution of climbing plants. Pp. 3–51 In: F.E. Putz & H. Mooney, (eds.) The Biology of Vines. Cambridge University Press, Cambridge, UK.

  • ———. 1991b. Breeding and dispersal systems of lianas. Pp. 393–423 In: F.E. Putz & H. Mooney, (eds.) The Biology of Vines. Cambridge University Press, Cambridge, UK.

  • Gerwing, J. & C. Uhl. 2002. Pre-logging liana cutting reduces liana regeneration in logging gaps in the eastern Brazilian Amazon. Ecological Applications 12: 1642–1651.

    Article  Google Scholar 

  • Gillespie, T. W. 1999. Life history characteristics and rarity of woody plants in tropical dry forest fragments of Central America. Journal of Tropical Ecology 15: 637–649.

    Article  Google Scholar 

  • Grauel, W. T. & F. E. Putz. 2004. Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. Forest Ecology and Management 190: 99–108.

    Article  Google Scholar 

  • Gysel, L. W. 1951. Borders and openings of beech-maple woodlands in southern Michigan. Journal of Forestry 49(1): 13–19.

    Google Scholar 

  • Hannaway, D. B. & C. Larson. 2004. Hairy Vetch (Vicia villosa Roth). Oregon State University, Forage Information System.

  • Harper, R. M. 1918. The plant population of northern lower Michigan and its environment. Bulletin of the Torrey Botanical Club 45(1): 23–42.

    Article  Google Scholar 

  • Harris, C. J. & R. Gallagher. 2010. Vines and lianas. p. 680-684 In: D. Simberloff & M. Rejmanek (eds.), Encyclopedia of biological invasions, University of California Press: Oakland.

    Google Scholar 

  • Hayes, K. R. & S. C. Barry. 2008. Are there any consistent predictors of invasion success? Biological Invasions 10(4): 483–506

    Article  Google Scholar 

  • Herron, P. M., C. T. Martine, A. M. Latimer & S. A. Leicht-Young. 2007. Invasive plants and their ecological strategies: predictions and explanation of woody plant invasion in New England. Diversity and Distributions 13: 633–644.

    Article  Google Scholar 

  • Horton, J. L. & J. S. Francis. 2014. Using dendroecology to examine the effect of Oriental Bittersweet (Celastrus orbiculatus) invasion on Tulip Poplar (Liriodendron tulipifera) growth. The American Midland Naturalist 172(1): 25–36.

    Article  Google Scholar 

  • Howe, H. F. & J. Smallwood. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13: 201–228.

    Article  Google Scholar 

  • Ingwell, L. L., S. J. Wright, K. K. Becklund, S. P. Hubbell & S. A. Schnitzer. 2010. The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology 98: 879–887.

    Article  Google Scholar 

  • Jesse, L. C., J. D. Nason, J. J. Obrycki & K. A. Moloney. 2010. Quantifying the levels of sexual reproduction and clonal spread in the invasive plant, Rosa multiflora. Biological Invasions 12(6): 1847–1854.

    Article  Google Scholar 

  • Jiménez-Castillo, M. & C. H. Lusk. 2013. Vascular performance of woody plants in a temperate rain forest: lianas suffer higher levels of freeze–thaw embolism than associated trees. Functional Ecology 27: 403–412.

    Article  Google Scholar 

  • Johnson, M. 2001. The genus Clematis. Magnus Johnson Planstkola AB, Södertälje.

    Google Scholar 

  • Ladwig, L. M. & S. J. Meiners. 2010a. Spatiotemporal dynamics of lianas during 50 years of succession to temperate forest. Ecology 91(3): 671–680.

    Article  PubMed  Google Scholar 

  • ———. 2010b. Liana host preference and implications for deciduous forest regeneration. Journal of the Torrey Botanical Society 137(1): 103–112.

  • Landscape Change Research Group. 2014. Climate change atlas. Northern Research Station, U.S. Forest Service, Delaware, OH. http://www.nrs.fs.fed.us/atlas.

  • Lanini, W. T. & M. Kogan. 2005. Biology and management of Cuscuta in Crops. Ciencia E Investigacion Agraria 32(3): 127–141.

    Google Scholar 

  • Leicht-Young, S. A., N. B. Pavlovic, K. J. Frohnapple & R. Grundel. 2010. Liana habitat and host preferences in northern temperate forests. Forest Ecology and Management 260(9): 1467–1477.

    Article  Google Scholar 

  • Lord, J., M. Westoby & M. Leishman. 1995. Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. The American Naturalist 146(3): 349–364.

    Article  Google Scholar 

  • Lutz, H. J. 1943. Injuries to trees caused by Celastrus and Vitis. Bulletin of the Torrey Botanical Club 70(4): 436–439.

    Article  Google Scholar 

  • Madden, M., R. Welch, T. Jordan, P. Jackson, R. Seavey & J. Seavey. 2004. Digital vegetation maps for the Great Smokey Mountains National Park. Final Report submitted to U.S. Department of Interior National Park Service. http://www1.usgs.gov/vip/grsm/grsmrpt.pdf

  • Michigan Flora Online. A. A. Reznicek, E. G. Voss & B. S. Walters. February 2011 and onwards. University of Michigan. http://michiganflora.net/home.aspx.

  • Miller, J. H., E. B. Chambliss & N. J. Loewenstein. 2010. Field guide for the identification of invasive plants in southern forests. Asheville, NC: U.S.D.A. Forest Service Southern Research Station. General Technical Report SRS-119.

  • Molano-Flores, B. 2014. An invasive plant species decreases native plant reproductive success. Natural Areas Journal 34(4): 465–469.

    Article  Google Scholar 

  • Muthuramkumar, S. & N. Parthasarathy. 2001. Alpha diversity of lianas in a tropical evergreen forest in the Anamalais, Western Ghats, India. Diversity and Distributions 6(1): 1–14.

    Article  Google Scholar 

  • Parker, G. R. & G. Schneider. 1975. Biomass and productivity of an alder swamp in northern Michigan. Canadian Journal of Forest Research 5(3): 403–409.

    Article  Google Scholar 

  • Patterson, D. T. 1976. The history and distribution of five exotic weeds in North Carolina. Castanea 41: 177–180.

    Google Scholar 

  • Pavlovic, N. B. & S. A. Leicht-Young. 2011. Are temperate mature forests buffered from invasive lianas? Journal of the Torrey Botanical Society 138(1): 85–92.

    Article  Google Scholar 

  • Pérez-Salicrup, D. R. 2001. Effect of liana cutting on tree regeneration in a liana forest in Amazonian Bolivia. Ecology 82(2): 389–396.

    Article  Google Scholar 

  • Rambuda, T. D. & S. D. Johnson. 2004. Breeding systems of invasive alien plants in South Africa: does Baker's rule apply? Diversity and Distributions 10(5-6): 409–416.

    Article  Google Scholar 

  • Renner, S. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101(10): 1588–1596.

    Article  PubMed  Google Scholar 

  • Richardson, D. M. & M. Rejmánek. 2011. Trees and shrubs as invasive alien species – a global review. Diversity and Distributions 17(5): 788–809.

    Article  Google Scholar 

  • Royer, F. & R. Dickinson. 1999. Weeds of the northern U.S. and Canada. University of Alberta Press, Edmonton.

    Google Scholar 

  • Schnitzer, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. The American Naturalist 166: 262–276

    Article  PubMed  Google Scholar 

  • ——— & F. Bongers. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17(5): 223–230.

  • Siccama, T. G., G. Weir & K. Wallace. 1976. Ice damage in a mixed hardwood forest in Connecticut in relation to Vitis infestation. Bulletin of the Torrey Botanical Club 103: 180–183.

    Article  Google Scholar 

  • Solórzano, S., G. Ibarra-Manríquez & K. Oyama. 2002. Liana diversity and reproductive attributes in two tropical forests in Mexico. Biodiversity and Conservation 11: 197–212.

    Article  Google Scholar 

  • Stone, K. R. 2009. Cynanchum louiseae, C. rossicum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.fs.fed.us/database/feis/

  • Thiers, B. 2015. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/

  • Thompson, K., J. G. Hodgson & T. C. G. Rich. 1995. Native and alien invasive plants: more of the same? Ecography 18(4): 390–402.

    Article  Google Scholar 

  • Tibbetts, T. J. & F. W. Ewers. 2000. Root pressure and specific conductivity in temperate lianas: exotic Celastrus orbiculatus (Celastraceae) vs. native Vitis riparia (Vitaceae). American Journal of Botany 87(9): 1272–1278.

    Article  CAS  PubMed  Google Scholar 

  • Vamosi, S. M., S. J. Mazer, & F. Cornejo. 2008. Breeding systems and seed size in a Neotropical flora: testing evolutionary hypotheses. Ecology 89(9): 2461–2472.

    Article  PubMed  Google Scholar 

  • Vamosi, J. C., Y. Zhang, & W. G. Wilson. 2007. Animal dispersal dynamics promoting dioecy over hermaphroditism. The American Naturalist 170(3): 485–491.

    Article  PubMed  Google Scholar 

  • Voss, E. G. 1972. Michigan Flora Part I: Gymnosperms and Monocots. Cranbrook Institute of Science, Ann Arbor.

    Google Scholar 

  • ———. 1985. Michigan Flora Part II: Dicots. Cranbrook Institute of Science, Ann Arbor.

  • ———. 2004. Michigan Flora Part III: Dicots Concluded. Cranbrook Institute of Science, Ann Arbor.

  • ——— & A. Reznicek. 2012. Field manual of Michigan flora. University of Michigan Press, Ann Arbor.

  • Waggy, M. A. 2009. Solanum dulcamara. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available: http://www.fs.fed.us/database/feis/

  • Welch, R. W. 1972. County evolution in Michigan 1790 – 1897. Michigan Department of Education State Library Services Occasional Paper No 2, Lansing, MI.

  • Wells, J. R. & P. W. Thompson. 1972. Field key to some common shrubs and vines of Michigan. The Michigan Botanist 11: 129–139.

    Google Scholar 

  • Wright, S. J., A. Hernandéz & R. Condit. 2007. The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica 39(3): 363–371.

    Article  Google Scholar 

  • Yanoviak, S. P. 2013. Shock value: are lianas natural lightning rods? Pp. 147–153 In: M. Lowman, S. Devy & T. Ganesh (eds.). Treetops at Risk: Challenges of Global Forest Canopies. Springer, New York, NY.

    Chapter  Google Scholar 

  • Zaroug, M. S., E. A. B. Zahran, A. A. Abbasher & E. A. A. Aliem. 2014. Host range of field dodder (Cuscuta campestris Yuncker) and its impact on onion (Allium cepa L.) cultivars grown in Gezira state Sudan. International Journal of AgriScience 4(7): 356–361.

    Google Scholar 

  • Zuloaga, F. O., O. N. Morrone, M. J. Belgrano, C. Marticorena & E. Marchesi (eds.). 2008. Catálogo de las plantas vasculares del Cono Sur. Monographs Systematic Botany Missouri Botanical Garden 107: 1–3348.

Download references

Acknowledgements

The authors are grateful to numerous undergraduate botanists, too many to be named here, who assisted with database compilation for Michigan Climbers. In particular we appreciate the dedication of Marko Melymuka and ReBecca Sonday in the early database stages, and Claire Malley for website design and construction. We also appreciate the support of Nicole Scholtz (U of M Clark Map Library) for advice on mapping. We thank two anonymous reviewers for very helpful commentary which substantially improved the manuscript. The research was supported in part by a grant to RJB from the University of Michigan School of Literature, Science, and the Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn J. Burnham.

Appendix

Appendix

TABLE IV Climbing Species of Michigan, Listed Alphabetically by Genus Within the Three Major Groups Analyzed: Native, Invasive, and Exotic. Also Listed for the 103 Species are Life Habit, Inferred Sexual System, Dispersal Mechanism, and Unit of Dispersal. Life Habits: W=Woody, H=Herbaceous, P= Perennial, A= Annual, B= Biennial. Sexual System: P=Hermaphroditic; M= Monoecious; D= Dioecious; O=Other. Dispersal Mechanism A= Abiotic, B= Biotic. Dispersal Unit Listed as Fruit (Including Achene) or Seed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnham, R.J., Santanna, C.V. Distribution, diversity, and traits of native, exotic, and invasive climbing plants in Michigan. Brittonia 67, 350–370 (2015). https://doi.org/10.1007/s12228-015-9385-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12228-015-9385-1

Key Words

Navigation