Skip to main content

Advertisement

Log in

Naturally recruited herbaceous vegetation in abandoned Belgian limestone quarries: towards habitats of conservation interest analogues?

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

We examined if naturally recruited herbaceous vegetation in abandoned Belgian limestone quarries tend towards plant communities analogous to semi-natural habitats of conservation interest. We studied taxon-based assemblages (using two-dimensional non-metric multidimensional scaling ordination) and functional patterns (relative to Grime’s competitor, stress tolerator and ruderal plant strategies (CSR) classification) of plant communities (n = 360 plots) among three different time periods after quarry abandonment (< 3 y, 3–20 y, > 20 y). We compared those successional assemblages with those of habitat of conservation interest plant communities (n = 53 plots): lowland hay meadows and rupicolous, xerophilous and mesophilous calcareous grasslands. Our results indicate that naturally recruited herbaceous vegetation compositionally resembled mesophilous grassland, even though initial substrate conditions were more similar to rupicolous or xerophilous grasslands. The specific successional pathway we found in CSR state-space differs from Grime's predictions because there was a functional shift in plant assemblages from dominance by ruderals to dominance by stress-tolerant species. The differences in successional trajectories we found on different types of rock substrate suggest that conservation management should adopt a site-specific approach, recognizing that the highest probabilities of success on hard limestone will be restoration to calcareous grassland analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alday JG, Marrs RH, Martinez-Ruiz C (2011) Vegetation convergence during early succession on coal wastes: a 6-year permanent plot study. J Veg Sci 22:1–12

    Article  Google Scholar 

  • Buisson E, Dutoit T, Torre F, Römermann C, Poschlod P (2006) The implications of seed rain and seed bank patterns for plant succession at the edges of abandoned fields in Mediterranean landscapes. Agric Eco-Syst Environm 115:6–14

    Article  Google Scholar 

  • Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006) The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral J Ecol 18:117–143

    Article  Google Scholar 

  • Dejonghe L (2006) Current status of chronostratigraphic units named from Belgium and adjacent areas. Geol Belgica 9:1–224

    Google Scholar 

  • R Development Core Team P (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Diaz S, Acosta A, Cabido M (1992) Morphological analysis of herbaceous communities under different grazing regimes. J Veg Sci 3:689–696

    Article  Google Scholar 

  • Duckworth JC, Kent M, Ramsay PM (2000) Plant functional types: an alternative to taxonomic plant community description in biogeography? Progr Phys Geogr 24:515–542

    Article  Google Scholar 

  • Ecke F, Rydin H (2000) Succession on a land uplift coast in relation to plant strategy theory. Ann Bot Fenn 37:163–171

    Google Scholar 

  • European Community (ed) (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. European Union Official Journal. European Community, Brussels

    Google Scholar 

  • Gilardelli F, Sgorbati S, Armiraglio S, Citterio S, Gentili R (2015) Ecological filtering and plant traits variation across quarry geomorphological surfaces: implication for restoration. Environm Managem 55:1147–1159

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties (2nd edition). John Wiley & Sons, Chichester

    Google Scholar 

  • Hedberg P, Kotowski W (2010) New nature by sowing? The current state of species introduction in grassland restoration, and the road ahead. J Nat Conservation 18:304–308

    Article  Google Scholar 

  • Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294

    Article  Google Scholar 

  • Holl KD, Cairns JR (2002) Monitoring and appraisal. In Perrow MR, Davy AJ (eds) Handbook of ecological restoration. Cambridge University Press, Cambridge, pp 409–432

    Google Scholar 

  • Horáčková M, Řehounková K, Prach K (2016) Are seed and dispersal characteristics of plants capable of predicting colonization of post-mining sites? Environm Sci Pollut Res Int 23:13617–13625

    Article  Google Scholar 

  • Hunt R, Hodgson JG, Thompson K, Bungener P, Dunnett NP, Askew AP (2004) A new practical tool for deriving a functional signature for herbaceous vegetation. Appl Veg Sci 7:163–170

    Article  Google Scholar 

  • Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Keddy PA (1992) A pragmatic approach to functional ecology. Funct Ecol 6:621–626

    Article  Google Scholar 

  • Kent M, Coker P (1992) Vegetations descriptions and analysis: a practical approach. British Library, London

    Google Scholar 

  • Kirmer A, Tischew S, Ozinga WA, von Lampe M, Baasch A, van Groenendael JM (2008) Importance of regional species pools and functional traits in colonization processes: predicting re-colonization after large-scale destruction of ecosystems. J Appl Ecol 45:1523–1530

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR - Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe Vegetationsk 38:1–334

    Google Scholar 

  • Körner C (1993) Scaling from species to vegetation: the usefulness of functional groups. In Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Ecological studies. Springer-Verlag, Berlin, pp 116–140

    Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27

    Article  Google Scholar 

  • Lambinon J, Delvosalle L, Duvigneaud J (2004) Nouvelle flore de la Belgique, du Grand-Duché de Luxembourg, du nord de la France et des régions voisines (ptéridophytes et spermatophytes). Jardin Botanique National de Belgique, Meise, Belgium

  • Lososová Z, Láníková D (2010) Differences in trait compositions between rocky natural and artificial habitats. J Veg Sci 21:520–530

    Article  Google Scholar 

  • Lundholm JT, Richardson PJ (2010) Habitat analogues for reconciliation ecology in urban and industrial environments. J Appl Ecol 47:966–975

    Article  Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, CA

    Google Scholar 

  • Novák J, Prach K (2003) Vegetation succession in basalt quarries: Pattern on a landscape scale. Appl Veg Sci 6:111–116

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2017) Vegan: community ecology package. R package, version 2.4-3

    Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In Likens EG (ed) Long-term studies in ecology: approaches and alternatives. Springer, Berlin, pp 110–135

  • Piqueray J, Bisteau E, Bottin G, Mahy G (2007) Plant communities and the species richness of calcareous communities in southeast Belgium. Belg J Bot 140:157–173

    Google Scholar 

  • Piqueray J, Mahy G, Vanderhoeven S (2008) Naturalization and impact of a horticultural species, Cotoneaster horizontalis (Rosaceae) in biodiversity hotspots in Belgium. Belg J Bot 141:113–124

    Google Scholar 

  • Piqueray J, Bisteau E, Cristofoli S, Palm R, Poschlod P, Mahy G (2011) Plant species extinction debt in a temperate biodiversity hotspot: community, species and functional traits approaches. Biol Conservation 144:1619–1629

    Article  Google Scholar 

  • Piqueray J, Rouxhet S, Hendrickx S, Mahy G (2016) Changes in the vegetation of hay meadows under an agri-environment scheme in South Belgium. Conservation Evidence 13:47–50

    Google Scholar 

  • Prach K (1987) Succession of vegetation on dumps from strip coal mining, N.W. Bohemia, Czechoslovakia. Folia Geobot Phytotax 22:339–354

    Article  Google Scholar 

  • Prach K (2003) Spontaneous succession in Central-European man-made habitats: what information can be used in restoration practice? Appl Veg Sci 6:125–129

    Article  Google Scholar 

  • Prach K, del Moral R (2015) Passive restoration is often quite effective: response to Zahawi et al. (2014). Restorat Ecol 23:344–346

    Article  Google Scholar 

  • Prach K, Lencová K, Řehounková K, Dvořáková H, Jírová A, Konvalinková P et al. (2013) Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environm Sci Pollut Res 20:7680–7685

    Article  Google Scholar 

  • Prach K, Řehounková K, Lencová K, Jírová A, Konvalinková P, Mudrák O et al. (2014) Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Appl Veg Sci 17:193–200

    Article  Google Scholar 

  • Prach K, Tichý L, Lencová K, Adámek M, Koutecký T, Sádlo J et al. (2016) Does succession run towards potential natural vegetation? An analysis across seres. J Veg Sci 1–9

  • Pykälä J (2005) Plant species responses to cattle grazing in mesic semi-natural grassland. Agric Eco-Syst Environm 108:109–117

    Article  Google Scholar 

  • Saar L, de Bello F, Pärtel M, Helm A (2017) Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia 184:1–12

    Article  PubMed  Google Scholar 

  • Service public de Wallonie (2012) Projet d’arrêté de désignation des sites Natura2000, enquêtes publiques 2012 [http://geoportail.wallonie.be/walonmap/, accessed November 2017]. WalOnMap, Brussels, Belgium

  • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function II. Psychometrika 27:219–246

    Article  Google Scholar 

  • Simonová D, Lososová Z (2008) Which factors determine plant invasions in man-made habitats in the Czech Republic? Perspect Pl Ecol Evol Syst 10:89–100

    Article  Google Scholar 

  • Tischew S, Kirmer A (2007) Implementation of basic studies in the ecological restoration of surface-mined land. Restorat Ecol 15:321–325

    Article  Google Scholar 

  • Török P, Vida E, Deák B, Lengyel S, Tóthmérész B (2011) Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers & Conservation 20:2311–2332

    Article  Google Scholar 

  • van den Boogaart KG, Tolosana R, Bren M (2013) The composition package: compositional data analysis. R package, version 0.9-11

  • Walker BH (1992) Biodiversity and ecological redundancy. Conservation Biol 6:18–23

    Google Scholar 

  • Walker LR, del Moral R (eds) (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Walker LR, Walker J, Hobbs RJ (eds) (2007) Linking restoration and ecological succession. Springer, New York

    Google Scholar 

  • WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conservation 104:265–273

    Article  Google Scholar 

  • Woodward FI, Cramer W (1996) Plant functional types and climatic change: introduction. J Veg Sci 7:306–308

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the quarry managers for the providing access to the quarries and for sharing information about the sites. We thank Louis-Marie Delescaille for help with plant identification. C. Pitz holds a Ph.D. fellowship from the Fund for Research Training in Industry and Agriculture (FRIA). We thank the editors and anonymous reviewers for their valuable comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carline Pitz.

Appendix 1

Appendix 1

List of full species names used in Fig. 2b: Betula pubescens Ehrh., Lotus corniculatus L., Bromus erectus Huds., Tussilago farfara L., Daucus carota L., Festuca lemanii Bast., Potentilla neumanniana Reichenb., Medicago lupulina L., Plantago lanceolata L., Taraxacum sp., Sanguisorba minor Scop., Conyza canadensis (L.) Cronq., Poa trivialis L., Picris hieracioides L., Hippocrepis comosa L., Sonchus oleraceus L., Sedum album L., Thlaspi perfoliatum L., Artemisia vulgaris L., Helianthemum nummularium (L.) Mill., Festuca rubra L., Crepis capillaris (L.) Wallr., Seseli libanotis (L.) Koch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitz, C., Piqueray, J., Monty, A. et al. Naturally recruited herbaceous vegetation in abandoned Belgian limestone quarries: towards habitats of conservation interest analogues?. Folia Geobot 53, 147–158 (2018). https://doi.org/10.1007/s12224-018-9313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-018-9313-8

Keywords

Navigation