Skip to main content

Advertisement

Log in

The Forest Ecotone Effect on Species Richness in an Arid Trans-Himalayan Landscape of Nepal

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Changes in species composition and richness across the sub-alpine forest ecotone are well known phenomena. The total number of species at a regional scale drops substantially above the forest-line in the central Himalayas of Nepal. This study tests the effect of a forest border ecotone on a local scale using a grain size of 100 m2. We sampled a set of vertical transects across a sloping sub-alpine forest line where canopy and temperature covary, and a set of horizontal transects across a forest ecotone where there was no altitudinal difference to eliminate the influence of temperature. Detrended correspondence analysis revealed a continuous change in species composition across the forest border ecotone. Species turnover was, in general, low, and species richness did not vary very much between the forest and open landscapes. We attribute this to the grazing and browsing pressure in the area, which may have lowered the tree line. A reduced tree line compared to the climatic limit may facilitate enhanced species richness above the forest line. There was no significant difference in species richness between forest and open landscapes along horizontal transects where temperature variations were minimized. This study exemplifies the difficulties encountered on a local scale when one aims to test diversity hypotheses deduced from general models on forest-ecotone effect and mass effect. The low species turnover and minor differences in alpha diversity may be because the area is a cultural landscape and the homogenizing effect of domestic animals overrides some of the edge effects of the ecotone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alados CL, Aich EL A, Komac B, Pueyo Y, García-Gonzalez R (2007) Self-organized spatial patterns of vegetation in alpine grasslands. Ecol Modelling 201:233–242

    Article  Google Scholar 

  • Anonymous (1995) Iso-climatic map of mean annual precipitation. ICIMOD / MENRIS, Kathmandu

  • Anonymous (2005) Climatological records of Nepal 1995–2005. Department of Hydrology and Meteorology, Kathmandu

  • Archaux F, Gosselin F, Berges L, Chevalier R (2006) Effects of sampling time, species richness and observer on the exhaustiveness of plant censuses. J Veg Sci 17:299–306

    Article  Google Scholar 

  • Armand A. (1992) Sharp and gradual mountain timberlines as result of species interaction. In Hansen AJ, di Castri F (eds) Landscape boundaries: Consequences for biotic diversity and ecological flows. Ecological Studies 92, Springer, Berlin, pp 360–378

  • Auerbach M, Shmida A (1993) Vegetation change along an altitudinal gradient on Mt. Hermon, Israel – no evidence for discrete communities. J Ecol 81:25–33

    Article  Google Scholar 

  • Austin MP (2005) Vegetation and environment: discontinuities and continuities. In van der Maarel E (ed) Vegetation ecology. Blackwell Publishing, Oxford, pp 52–84

    Google Scholar 

  • Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecol Biogeogr 12:327–340

    Article  Google Scholar 

  • Camarero JJ, Gutierrez E, Fortin M (2006) Spatial pattern of plant richness across tree line ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Global Ecol Biogeogr 15:182–191

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2002) Use of shrubs as nurse plants: a new technique for restoration in Mediterranean mountains. Restoration Ecol 10:297–305

    Article  Google Scholar 

  • Dobson AJ (2002) An introduction to generalized linear models. Ed. 2. Chapman and Hall, London

    Google Scholar 

  • Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulißen D (1991) Zeigenwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248

    Google Scholar 

  • Fuentes ER, Otaiza RD, Alliende MC, Hoffman AJ, Poiani A (1984) Shrub clumps of the Chilean matorral vegetation: structure and possible maintenance mechanisms. Oecologia 62:405–411

    Article  Google Scholar 

  • Germino MJ., Smith WK, Resor A.C (2002) Conifer seedling distribution and survival in an alpine treeline ecotone. Pl Ecol 162:157–168

    Article  Google Scholar 

  • Grytnes JA (2003) Species-richness of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300

    Article  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Amer Naturalist 159:294–304

    Article  Google Scholar 

  • Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Geol 29:241–246

    Google Scholar 

  • Hadley JL, Smith WK (1987) Influence of Krummholz mat microclimate on needle physiology and survival. Oecologia 73:82–90

    Article  Google Scholar 

  • Hagen T (1969) Report on Geological Survey of Nepal. Denkschr Schweiz Naturf Ges 86:1–185

    Google Scholar 

  • Hara H, Williams HJ (1979) An enumeration of the flowering plants of Nepal II. British Museum Natural History, London

    Google Scholar 

  • Hara H, Williams HJ (1982) An enumeration of the flowering plants of Nepal III. British Museum Natural History, London

    Google Scholar 

  • Hara H, Stearn WT, Williams HJ (1978) An enumeration of the flowering plants of Nepal I. British Museum Natural History, London

    Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, London

    Google Scholar 

  • Hastie TJ, Pregibon D (1993) Generalized Linear Models. In Chambers JM, Hastie TJ (eds) Statistical models. Chapman & Hall, London, pp 195–247

    Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hofgaard A (1997) Inter-relationships between tree line position, species diversity, and land use and climate change, in the central Scandes Mountain of Norway. Global Ecol Biogeogr Lett 6:419–429

    Article  Google Scholar 

  • Hofgaard A, Willmann B (2002) Plant distribution pattern across the forest-tundra ecotone: The importance of tree line position. Ecoscience 9:375–385

    Google Scholar 

  • Kitayama K (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–171

    Article  Google Scholar 

  • Kitzberger T, Steinaker DF, Veblen TT (2000) Effect of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology 81:1914–1924

    Article  Google Scholar 

  • Joel F, Enrique J (2003) Are nurse protégé interactions more common among plants from arid environments? J Veg Sci 14:911–916

    Article  Google Scholar 

  • Klimeš L, Dančák M, Hájek M, Jongepierová I, Kučera T (2001) Scale-dependent biases in species counts in a grassland. J Veg Sci 12:699–704

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life: Functional plant ecology of high mountain ecosystems. Springer Verlag, Berlin

    Google Scholar 

  • Kullman L (1993) Tree-limit dynamics of Betula pubescens ssp. tortuousa in relation to climate variability: evidence from central Sweden. J Veg Sci 4:765–772

    Article  Google Scholar 

  • Kullman L (1998) Tree limits and montane forests in Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312–321

    Google Scholar 

  • Kullman L (2000) Tree limits and recent warming: a geological case study from the Swedish Scandes. Norsk Geogr Tidsskr 54:49–59

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Ed. 2. Elsevier, Amsterdam

    Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species density: historical and prospective views. Global Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Łuczaj Ł. & Sadowska B. (1997) Edge effect in different groups of organism: vascular plant, bryophyte and fungi species richness across forest landscape border. Folia Geobot Phytotax 32:343–353

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear model. Ed. 2. Chapman & Hall, London

    Google Scholar 

  • Miehe G (1982) Vegetations geographische Untersuchungen im Dhaulagiri in Annapurna-Himalaya. Dissertationes Botanicæ 66. J. Cramer, Vaduz

  • Moquet N, Loreau M (2003) Community patterns in source-sink metacommunities. Amer Naturalist 162:544–557

    Article  Google Scholar 

  • O’Brien EM (2006) Biological relativity to water-energy dynamics. J Biogeogr 33:1868–1888

    Article  Google Scholar 

  • Odland A (1996) Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. Palaeoclimate Res 20:43–59

    Google Scholar 

  • Odland A, Birks HJB (1999) The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography 22:548–566

    Google Scholar 

  • Oke TR (1987) Boundary layers climate. Ed. 2. Methuen & Co, New York

    Google Scholar 

  • Økland RH, Bendiksen E (1985) The vegetation of forest-alpine transition in the Grunningsdalen area, Telemark, SE Norway. Sommerfeltia 2:1–224

    Google Scholar 

  • Press JR, Shrestha KK, Sutton DA (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum, London

    Google Scholar 

  • Quinn G, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.r-project.org/

  • Shmida A, Wilson MW (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Stainton JDA (1972) Forests of Nepal. John Murray Ltd., London

    Google Scholar 

  • Stevens GC (1992) The elevation gradient in altitudinal range: an extension of rappoport’s latitudinal rule to altitude. Amer Naturalist 140:893–911

    Article  CAS  Google Scholar 

  • ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Advances Ecol Res 18:271–317

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination version 4. Micro computer Power, Ithaca

  • ter Braak CJF, Šmilauer P (2002) Canoco for Windows version 4.5. Biometrics-Plant Research International, Wageningen

  • van der Maarel E (1990) Ecotone and ecoclines are different. J Veg Sci 1:135–138

    Article  Google Scholar 

  • Vandvik V, Heegaard E, Måren IE, Aarrestad PA (2005) Managing heterogeneity: the importance of grazing and environmental variation on post-fire succession in heathlands. J Appl Ecol 42:139–149

    Article  Google Scholar 

  • Vetaas OR (2006) Biological relativity to water-energy dynamics: a potential unifying theory? J Biogeogr 33:1866–1867

    Article  Google Scholar 

  • Vetaas OR, Grytnes JA (2002) Distribution of vascular plants species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol Biogeogr 11:291–301

    Article  Google Scholar 

Download references

Acknowledgements

We thank Shishir Poudel and Narayan Shrestha for accompanying us during the field work. We are grateful to Prof. John Birks and other members of Environmental and Ecological Change Research Group (EECRG) for constructive comments on early drafts of this paper. Annapurna Conservation Area Project (ACAP) is acknowledged for permission to undertake field work. State Education Loan Fund (Lånekassen), The Faculty of Mathematics and Natural Science at the University of Bergen supported fieldwork for both the authors. Cathy Jenks is acknowledged for improvement of the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Reidar Vetaas.

Appendix 1

Appendix 1

Species names and abbreviations used in Fig. 3

Nr.

Full name of the species

Species Abbreviation

1

Anaphalis cuneifolia

Anap cun

2

Androsace sp.

Andr sp.

3

Androsace strigillosa

Andr str

4

Aster himalaicus

Aste him

5

Aster indamellus (A. pseudamellus)

Aste ind

6

Astragalus rhizanthus

Astr rhi

7

Berberis aristata var. floribunda

Berb ari

8

Berberis concinna

Berb con

9

Bupleurum tenue

Bupl ten

10

Carex sp.

Care sp.

11

Cotoneaster microphyllus

Coto mic

12

Cotoneaster sp.

Coto sp.

13

Gentiana robusta

Gent rob

14

Juniperus indica

Juni ind

15

Juniperus squamata

Juni squ

16

Lactuca lessertiana

Lact les

17

Lonicera myrtillus

Loni myr

18

Pinus wallichiana

Pinu wal

19

Polygonatum cirrhifolium

Poly cir

20

Selinum tenuifolium

Seli ten

21

Spiraea arcuata

Spir arc

22

Stellera chamaejasme

Stel cam

23

Stipa sp.

Stip sp.1

24

Tanacetum nubigenum

Tana nub

25

Thalictrum foetidum

Thal foe

26

Thymus linearis

Thym lin

27

Trigonella emodi

Trig emo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, K.B., Vetaas, O.R. The Forest Ecotone Effect on Species Richness in an Arid Trans-Himalayan Landscape of Nepal. Folia Geobot 44, 247–262 (2009). https://doi.org/10.1007/s12224-009-9046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-009-9046-9

Keywords

Navigation