Skip to main content

Advertisement

Log in

Pitfalls in Small-Scale Species-Area Sampling and Analysis

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Analyses of the dependency of species richness (S) on area (A), the so-called species-area relationships (SARs), are widespread approaches to characterize and compare biodiversity patterns. This article highlights – with a focus on small-scale SARs of plants in continuous ecosystems – how inappropriate sampling methods or theoretical misconceptions can create artifacts and thus may lead to wrong conclusions. Most of these problems have been recognized before but continue to appear regularly in the scientific literature. The following main points are reviewed and discussed: i) Species richness values and SARs depend on the measurement method (any-part vs. grid-point system); ii) Species-richness values depend on the shape of the analyzed plots; iii) Many published SARs are not true SARs but instead represent species sampling curves or their data points consist of richness totals for incontiguous subplots; iv) Nested-plot design is the preferred sampling method for SARs (the claim that this approach would cause pseudoreplication is erroneous); v) SARs should be constructed using mean values of several counts for the smaller areas; vi) SAR functions can be fitted and selected both in the S- and the log S-space but this must be done consistently for all compared function types. It turns out that the finding of non-power function SARs in many studies is due to a lack of awareness of one or several of the named points. Thus, power-function SARs are even more widespread than a recent review would suggest. I therefore propose to use the power law as a universal model for all types of SARs but to test whether the slope z varies with spatial scale. Finally, I urge readers to be aware of the many pitfalls in SAR studies, to fully disclose methodology, and to apply a meaningful and consistent terminology, especially by restricting the terms “species-area relationship” and “species density” to situations in which each data point represents a contiguous area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allers M-A, Dengler J (2007) Small-scale patterns of pant species richness in the central European landscape. Verh Ges Ökol 37:181

    Google Scholar 

  • Adler PB, White EP, Lauenroth WK, Kaufman DM, Rassweiler A, Rusak JA (2005) Evidence for a general species-time-area relationship. Ecology 86:2032–2039

    Article  Google Scholar 

  • Barkman JJ (1989) A critical evaluation of minimum area concepts. Vegetatio 85:89–104

    Article  Google Scholar 

  • Bell G, Lechowicz MJ, Appenzeller A, Chandler M, DeBlois E, Jackson L, Mackenzie B, Preziosi R, Schallenberg M, Tinker N (1993) The spatial structure of the physical environment. Oecologia 96:114–121

    Article  Google Scholar 

  • Bossuyt B, Hermy M (2004) Species turnover at small scales in dune slack plant communities. Basic Appl Ecol 5:321–329

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference – A practical information-theoretic approach. Ed. 2, Springer, New York

    Google Scholar 

  • Chiarucci A, Viciani D, Winter C, Diekmann M (2006) Effects of productivity on species-area curves in herbaceous vegetation: evidence from experimental and observational data. Oikos 115:475–483

    Article  Google Scholar 

  • Chong GW, Stohlgren TJ (2007) Species-area curves indicate the importance of habitats’ contribution to regional biodiversity. Ecol Indicators 7:387–395

    Article  Google Scholar 

  • Christensen E (2007) Eine Theorie zur Beziehung zwischen Artenzahl und Flächengröße. Mitt Arbeitsgem Geobot Schleswig-Holstein Hamburg 64:1–296

    Google Scholar 

  • Condit R, Hubbell SP, Lafrankie JV, Skumar R, Manokaran N, Foster RB, Ashton PS (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84:549–562

    Article  Google Scholar 

  • Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Amer Naturalist 113:791–833

    Article  Google Scholar 

  • Connor EF, McCoy ED (2001) Species-area relationships. In Levin SA (eds) Encyclopedia of biodiversity 5. Academic Press, San Diego, pp 397–411

    Google Scholar 

  • Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868

    Article  PubMed  CAS  Google Scholar 

  • Cresswell JE, Vidal-Martinez VM (1995) The investigation of saturation in the species richness of communities: some comments on methodology. Oikos 72:301–304

    Article  Google Scholar 

  • Dengler J (2003) Entwicklung und Bewertung neuer Ansätze in der Pflanzensoziologie unter besonderer Berücksichtigung der Vegetationsklassifikation. Arch Naturwiss Diss 14:1–297

    Google Scholar 

  • Dengler J (2006) Variabilität von Artendichte und Artenzusammensetzung auf unterschiedlichen räumlichen Skalenebenen – Exemplarische Untersuchungen aus Trockenrasen und Konsequenzen für das Probedesign von Biodiversitätsuntersuchungen. In Bültmann H, Fartmann T, Hasse T (eds) Trockenrasen auf unterschiedlichen Betrachtungsebenen – Berichte einer Tagung vom 26.-28. August in Münster, Arbeiten Inst Landschaftsökol Münster 15:73–81

  • Dengler J (in press) Which function describes the species-area relationship best? A review and empirical evaluation. J Biogeogr

  • Dengler J, Boch S (2008) Sampling-design effects on properties of species-area relationships – a case study from Estonian dry grassland communities. Folia Geobot 43(3):289–304

    Article  Google Scholar 

  • Dengler J, Bedall P, Bruchmann I, Hoeft I, Lang A (2004) Artenzahl-Areal-Beziehungen in uckermärkischen Trockenrasen unter Berücksichtigung von Kleinstflächen – eine neue Methode und erste Ergebnisse. Kieler Not Pflanzenk Schleswig-Holstein Hamburg 32:20–25

    Google Scholar 

  • Désilets P, Houle G (2005) Effects of resource availability and heterogeneity on the slope of the species-area curve along a floodplain-upland gradient. J Veg Sci 16:487–496

    Article  Google Scholar 

  • Desmet P, Cowling R (2004) Using the species-area relationship to set baseline targets for conservation. Ecol Soc 9(2):1–23 available at: http://www.ecologyandsociety.org/vol9/iss2/art11, Article 1

    Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie – Grundlagen und Methoden. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Dolnik C (2003) Artenzahl-Areal-Beziehungen von Wald- und Offenlandgesellschaften – Ein Beitrag zur Erfassung der botanischen Artenvielfalt unter besonderer Berücksichtigung der Flechten und Moose am Beispiel des Nationalparks Kurischen Nehrung (Russland). Mitt Arbeitsgem Geobot Schleswig-Holstein Hamburg 62:1–183

    Google Scholar 

  • Dolnik C, Breuer M (2008) Scale dependency in the species-area relationship of plant communities. Folia Geobot 43(3):305–318

    Article  Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol Lett 9:215–227

    Article  PubMed  Google Scholar 

  • Fattorini S (2007) To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species-area relationship is used to locate hotspots. Biodivers & Conservation 16:2531–2538

    Article  Google Scholar 

  • Flather CH (1996) Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. J Biogeogr 23:155–168

    Article  Google Scholar 

  • Fridley JD, Peet RK, Wentworth TR, White PS (2005) Connecting fine- and broad-scale species-area relationships of southeastern U. S. flora. Ecology 86:1172–1177

    Article  Google Scholar 

  • Gitay H, Roxburgh SH, Wilson JB (1991) Species-area relations in a New Zealand tussock grassland, with implications for nature reserve design and for community structure. J Veg Sci 2:113–118

    Article  Google Scholar 

  • Gleason HA (1922) On the relation between species and area. Ecology 3:158–162

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gray JS, Ugland KI, Lambshead J (2004a) Species accumulation and species area curves – a comment on Scheiner (2003). Global Ecol Biogeogr 13:469–476

    Article  Google Scholar 

  • Gray JS, Ugland KI, Lambshead J (2004b) On species accumulation and species-area curves. Global Ecol Biogeogr 13:567–568

    Article  Google Scholar 

  • Greig-Smith P (1983) Quantitative plant ecology. Ed. 3, Blackwell, Oxford

    Google Scholar 

  • Harte J, McCarthy S, Taylor K, Kinzig A, Fischer ML (1999) Estimating species-area relationships from plot to landscape scale using species spatial-turnover data. Oikos 86:45–54

    Article  Google Scholar 

  • He F, Legendre P (1996) On species-area relations. Amer Naturalist 148:719–737

    Article  Google Scholar 

  • Heegaard E, Økland RH, Bratli H, Dramstad WE, Engan G, Pedersen O, Solstad H (2007) Regularity of species richness relationships to patch size and shape. Ecography 30:589–597

    Google Scholar 

  • Hill JL, Curran PJ (2003) Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30:1391–1403

    Article  Google Scholar 

  • Hopkins B (1955) The species-area relation of plant communities. J Ecol 43:409–426

    Article  Google Scholar 

  • Hui C (2008) On species-area and species accumulation curves: A comment on Chong and Stohlgren’s index. Ecol Indicators 8:327–329

    Article  Google Scholar 

  • Inouye RS (1998) Species-area curves and estimates of total species richness in an old-field chronosequence. Pl Ecol 137:31–40

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Keeley JE, Fotheringham CJ (2005) Plot shape effects on plant species diversity measurements. J Veg Sci 16:249–256

    Article  Google Scholar 

  • Kilburn PD (1966) Analysis of the species-area relation. Ecology 47:831–843

    Article  Google Scholar 

  • Knapp R (1984) (ed) Sampling methods and taxon analysis in vegetation science – Relevé surveys, ‘Vegetationsaufnahmen’, floristic analysis of plant communities. Handbook of Vegetation Science 4, W. Junk Publ., The Hague

  • Kunin WE (1997) Sample shape, spatial scale and species counts: implications for reserve design. Biol Conservation 82:369–377

    Article  Google Scholar 

  • Löbel S, Dengler J, Hobohm C (2004) Beziehungen zwischen der Artenvielfalt von Gefäßpflanzen, Moosen und Flechten in Trockenrasen der Insel Öland (Schweden). Kieler Not Pflanzenk Schleswig-Holstein Hamburg 32:9–13

    Google Scholar 

  • Loehle C (1990) Proper statistical treatment of species-area data. Oikos 57:143–145

    Article  Google Scholar 

  • Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species-area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Lomolino MV (2001) The species-area relationship: new challenges for an old pattern. Progr Phys Geogr 25:1–21

    Google Scholar 

  • Lomolino MV, Weiser MD (2001) Towards a more general species-area relationship: diversity on all islands, great and small. J Biogeogr 28:431–445

    Article  Google Scholar 

  • McGill B (2003) Strong and weak test of macroecological theory. Oikos 102:678–685

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Öster M, Cousins SAO, Eriksson O (2007) Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veg Sci 18:859–868

    Article  Google Scholar 

  • Palmer MW (1995) How should one count species? Nat Areas J 15:124–135

    Google Scholar 

  • Palmer MW, McGlinn DJ, Fridley JD (2008) Artifacts and artifictions in biodiversity research. Folia Geobot 43(3):245–257

    Article  Google Scholar 

  • Peet RK, Wentworth TR, White PS (1998) A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63:262–274

    Google Scholar 

  • Plotkin JB, Potts MD, Yu DW, Bunyavejchewin S, Condit R, Foster R, Hubbell SP, LaFrankie J, Manokaran N, Seng LH, Sukumar R, Nowak MA, Ashton PS (2000) Predicting species diversity in tropical forests. Proc Natl Acad USA 97:10850–10854

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Rejmánek M, Rosén E (1992) Influence of colonizing shrubs on species-area relationships in alvar plant communities. J Veg Sci 3:625–630

    Article  Google Scholar 

  • Ricotta C (2007) Random sampling does not exclude spatial dependence: the importance of neutral models for ecological hypothesis testing. Folia Geobot 42:153–160

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Sagar R, Raghubanshi AS, Singh JS (2003) Asymptotic models of species-area curve for measuring diversity of dry tropical forest tree species. Curr Sci Assoc 84:1555–1560

    Google Scholar 

  • Scheiner SM (2003) Six types of species - area curves. Global Ecol Biogeor 12:441–447

    Article  Google Scholar 

  • Scheiner SM (2004) A mélange of curves - further dialogue about species-area relationships. Global Ecol Biogeogr 13:479–484

    Article  Google Scholar 

  • Shmida A (1984) Whittaker’s plant diversity sampling method. Israel J Bot 33:41–46

    Google Scholar 

  • Stiles A, Scheiner SM (2007) Evaluation of species-area functions using Sonoran Desert plant data: not all species-area curves are power functions. Oikos 116:1930–1940

    Article  Google Scholar 

  • Stohlgren TJ (1995) Planning long-term vegetation studies at landscape scales. In Powell TM, Steele JH (eds) Ecological time series. Chapman & Hall, New York, pp 209–241

    Google Scholar 

  • Stohlgren TJ (2007) Measuring plant diversity – lessons from the field. Oxford University Press, Oxford

    Google Scholar 

  • Stohlgren TJ, Falkner MB, Schell LD (1995) A modified-Whittaker nested vegetation sampling method. Vegetatio 117:113–121

    Article  Google Scholar 

  • Sykes MT, van der Maarel E, Peet RK, Willems J (1994) High species mobility in species-rich plant communities: an intercontinental comparison. Folia Geobot Phytotax 29:439–448

    Google Scholar 

  • Tittensor DP, Micheli F, Nyström M, Worm B (2007) Human impacts on the species-area relationship in reef fish assemblages. Ecol Lett 10:760–772

    Article  PubMed  Google Scholar 

  • Tjørve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Article  Google Scholar 

  • van der Maarel E (1997) Biodiversity: from bable to biosphere management. Special Features in Biosystematics and Biodiversity 2. Opulus Press, Uppsala

    Google Scholar 

  • Veech JA (2000) Choice of species-area function affects indentification of Hotspots. Conservation Biol 14:140–147

    Article  Google Scholar 

  • Westhoff V, van der Maarel E (1973) The Braun-Blanquet approach. In Whittaker RH (eds) Ordination and classification of communities. Handbook of Vegetation Science 5. W. Junk Publ., The Hague, pp 617–726

    Google Scholar 

  • Williams CB (1943) Area and number of species. Nature 152:264–267

    Article  Google Scholar 

  • Williams MR (1995) An extreme-value function model of the species incidence and species-area relations. Ecology 76:2607–2616

    Article  Google Scholar 

  • Williams MR (1996) Species-area curves: the need to include zeroes. Global Ecol Biogeogr Lett 5:91–93

    Article  Google Scholar 

  • Williams JW, ReVelle CS, Levin SA (2005) Spatial attributes and reserve design models: A review. Environm Modelling Assessm 10:163–181

    Article  Google Scholar 

  • Williamson M (1988) Relationship of species number to area, distance and other variables. In Myers AA, Giller PS (eds) Analytical biogeography: An integrated approach to the study of animal and plant distributions. Chapman & Hall, London, pp 91–115

    Google Scholar 

  • Williamson M (2003) Species-area relationships at small scales in continuum vegetation. J Ecol 91:904–907

    Article  Google Scholar 

  • Williamson M, Gaston KJ, Lonsdale WM (2001) The species-area relationship does not have an asymptote!. J Biogeogr 28:827–830

    Article  Google Scholar 

  • Williamson M, Gaston KJ, Lonsdale WM (2002) An asymptote is an asymptote and not found in species-area relationships. J Biogeogr 29:1713–1713

    Article  Google Scholar 

  • Wilson JB (2007) Priorities in statistics, the sensitive feet of elephants, and don’t transform data. Folia Geobot 42:161–167

    Article  Google Scholar 

  • Zonneveld IS (1994) Vicinism and mass effect. J Veg Sci 5:441–444

    Article  Google Scholar 

Download references

Acknowledgements

I thank Tomáš Herben for inviting this contribution, three anonymous reviewers as well as Christian Dolnik and the members of the two plant ecological working groups at the University of Hamburg for constructive comments on earlier versions of the manuscript, which led to significant improvements, and Curtis Björk for polishing the English usage. Christian Dolnik kindly provided the richness data used in Fig. 1. Finally, I wish to express my gratitude towards Carsten Hobohm and Erik Christensen, who together with Christian Dolnik have spurred my interest in species-area relationships and with whom I had long and inspiring discussions on many of the topics dealt with in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Dengler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dengler, J. Pitfalls in Small-Scale Species-Area Sampling and Analysis. Folia Geobot 43, 269–287 (2008). https://doi.org/10.1007/s12224-008-9014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-008-9014-9

Keywords

Navigation