Skip to main content
Log in

Molecular detection and identification of Wolbachia endosymbiont in fleas (Insecta: Siphonaptera)

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the presence and prevalence of Wolbachia bacteria in natural population of fleas (Insecta: Siphonaptera) in Turkey, and to exhibit the molecular characterization and the phylogenetic reconstruction at the positive isolates with other species in GenBank, based on 16S rDNA sequences. One hundred twenty-four flea samples belonging to the species Ctenocephalides canis, C. felis, and Pulex irritans were collected from animal shelters in Kayseri between January and August 2017. All flea species were individually screened for the presence of Wolbachia spp. by polymerase chain reaction (PCR) targeting the 16S ribosomal RNA gene. According to PCR analyses, Wolbachia spp. were found prevalent in C. canis and P. irritans fleas, while it was not detected in the C. felis species. Totally, 20 isolates were purified from agarose gel and sequenced with the same primers for molecular characterization and phylogenetic analyses. The sequence analyses revealed 17 polymorphic sites and 2 genetically different Wolbachia isolates, representing two different haplotypes in two flea species. The distribution patterns, molecular characterization, and phylogenetic status of Wolbachia spp. of fleas in Turkey are presented for the first time with this study. Understanding of the role of Wolbachia in vector biology may provide information for developing Wolbachia-based biological control tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azarm A, Dalimi A, Mohebali M, Zarei Z (2016) Morphological and molecular characterization of Ctenocephalides spp. isolated from dogs in north of Iran. J Entomol Zool Stud 4:713–717

    Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blagburn BL, Dryden MW (2009) Biology, treatment, and control of flea and tick infestations. Vet Clin North Am-Small 39:1173–1200

    Google Scholar 

  • Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C (2005) Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiol 151:4015–4022

    CAS  Google Scholar 

  • Da Silva TKS, Blanco CM, Ogrzewalska M, de Souza MB, Barreira JD, Moreira NS, Mares-Guia MAMM, De Lemos ES (2017) Investigation of Ehrlichia spp., Anaplasma spp. and Rickettsia spp. in ectoparasites collected from domestic animals, Rio de Janeiro State, Brazil. Virus Rev Res 22:30–36

    Google Scholar 

  • Dittmar K, Whiting MF (2004) New Wolbachia endosymbionts from Nearctic and Neotropical fleas (Siphonaptera). J Parasitol 90:953–957

    PubMed  Google Scholar 

  • Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla A, Ouma J, Takac P, Aksoy S, Bourtzis K (2012) Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol 12(Suppl 1):S3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dryden MW (1993) Biology of fleas of dogs and cats. Compend Contin Educ Pract Vet 15:569–579

    Google Scholar 

  • Eisen RJ, Gage KL (2012) Transmission of flea-borne zoonotic agents. Annu Rev Entomol 57:61–82

    CAS  PubMed  Google Scholar 

  • Fischer P, Schmetz C, Bandi C, Bonow I, Mand S, Fischer K, DW B¨u (2002) Tunga penetrans: molecular identification of Wolbachia endobacteria and their recognition by antibodies against proteins of endobacteria from filarial parasites. Exp Parasitol 102:201–211

    CAS  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Furman DP, Catts EP (1982) Manual of medical entomology. 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Gorham CH, Fang QQ, Durden LA (2003) Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 89:283–289

    CAS  PubMed  Google Scholar 

  • Gracia MJ, Calvete C, Estrada R, Castillo JA, Prebanez MA, Lucientes J (2008) Fleas parasitizing domestic dogs in Spain. Vet Parasitol 151:312–319

    CAS  PubMed  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    CAS  PubMed  Google Scholar 

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405

    CAS  PubMed  Google Scholar 

  • Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamtchum-Tatuene J, Makepeace BL, Benjamin L, Baylis M, Solomon T (2017) The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Curr Opin Infect Dis 30(1):108–116

    PubMed  PubMed Central  Google Scholar 

  • Karimian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Choubdar N, Koosha M, Arzamani K, Moradi-Asl E, Veysi A, Alipour H, Shirani M, Oshaghi MA (2018) wsp-based analysis of Wolbachia strains associated with Phlebotomus papatasi and P. sergenti (Diptera: Psychodidae) main cutaneous leishmaniasis vectors, introduction of a new subgroup wSerg. Pathog Glob Health 112:152–160

    PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kramer F, Mencke N (2001) Flea biology and control. Springer, Berlin

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data

  • Marshall AG (1981) The sex ratio in ectoparasitic insects. Ecol Entomol 6:155–174

    Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7):1268–1278

    PubMed  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89:2699–2702

    PubMed  PubMed Central  Google Scholar 

  • Oteo JA, Portillo A, Portero F, Zavala-Castro J, Venzal JM, Labruna MB (2014) Candidatus Rickettsia asemboensis and Wolbachia spp. in Ctenocephalides felis and Pulex irritans fleas removed from dogs in Ecuador. Parasit Vectors 7:455

    PubMed  PubMed Central  Google Scholar 

  • Otranto D, Wall R (2008) New strategies for the control of arthropod vectors of disease in dogs and cats. Med Vet Entomol 22:291–302

    CAS  PubMed  Google Scholar 

  • Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, Liang X, Zhang F, Raikhel AS, Xi Z (2018) The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J 12(1):277–288

    CAS  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    CAS  PubMed  Google Scholar 

  • Pourali P, Roayaei Ardakani M, Jolodar A, Razi Jalali MH (2009) PCR screening of the Wolbachia in some arthropods and nematodes in Khuzestan Province. Iran J Vet Res 10:216–222

    Google Scholar 

  • Rolain JM, Franc M, Davoust B, Raoult D (2003) Molecular detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis, and Wolbachia pipientis in cat fleas, France. Emerg Infect Dis 9:338–342

    CAS  PubMed  Google Scholar 

  • Rust MK (2005) Advances in the control of Ctenocephalides felis (cat flea) on cats and dogs. Trends Parasitol 21:232–236

    CAS  PubMed  Google Scholar 

  • Sazama EJ, Bosch MJ, Shouldis CS, Ouellette SP, Wesner JS (2017) Incidence of Wolbachia in aquatic insects. Ecol Evol 7(4):1165–1169

    PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA7: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tavassoli M, Ahmadi A, Imani A, Ahmadiara E, Javadi S, Hadian M (2010) Survey of flea infestation in dogs in different geographical regions of Iran. Korean J Parasitol 48:145–149

    PubMed  PubMed Central  Google Scholar 

  • Tay ST (2013) Wolbachia endosymbionts, Rickettsia felis and Bartonella species, in Ctenocephalides felis fleas in a tropical region. J Vect Ecol 38:200–202

    CAS  Google Scholar 

  • Vivero RJ, Cadavid-Restrepo G, Herrera CXM, Soto SIU (2017) Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast. Parasit Vectors 10:220

  • Wall R, Shearer D (2001) Veterinary ectoparasites, biology, pathology and control, 2nd edn. Blackwell Science, London

    Google Scholar 

  • Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc Lond B Biol Sci 282:20150249

    Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    CAS  PubMed  Google Scholar 

  • Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Biol Sci 267(1450):1277–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiting MF, Whiting AS, Hastriter MW, Dittmar K (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24:677–707

    Google Scholar 

  • Xi Z, Gavotte L, Xie Y, Dobson SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9(1):1

    PubMed  PubMed Central  Google Scholar 

  • Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond Ser B 265:509–515

    CAS  Google Scholar 

  • Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7(6):e38544

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuhal Onder.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onder, Z., Ciloglu, A., Duzlu, O. et al. Molecular detection and identification of Wolbachia endosymbiont in fleas (Insecta: Siphonaptera). Folia Microbiol 64, 789–796 (2019). https://doi.org/10.1007/s12223-019-00692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00692-5

Navigation