Skip to main content

Advertisement

Log in

Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Polychlorinated aromatic compounds, including pentachlorobenzenes and hexachlorobenzenes, are recalcitrant industrial pollutants that cause adverse effects on living cells. In this paper, the isolation of Pseudomonas fluorescens species with high resistance to pentachlorobenzene (PeCB) is reported. It was found that, in contrast to its slightly negative effect on P. fluorescens growth, PeCB readily inhibited the cell growth of Serratia spp. and Escherichia coli strains, thus indicating that inhibition of bacterial growth by PeCB is species-dependent. Analysis of a P. fluorescens isolate revealed that the exposure to PeCB induced production of reactive oxygen species and led to an increase in the level of alkyl hydroperoxide reductase C (AhpC), an important enzyme enhancing the cell tolerance to organic hydroperoxides usually accumulated under oxidative stress. The putative mechanism conferring PeCB resistance to P. fluorescens and the potential use of P. fluorescens in bioremediation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arora PK, Bae H (2014) Role of dehalogenases in aerobic bacterial degradation of chlorinated aromatic compounds. J Chem:157974. doi:10.1155/2014/157974

  • Atlas RM, Bartha R (1997) Physiological ecology of microorganisms: adaptations to environmental conditions. In: Ronald M, Bartha R (eds) Microbial ecology: fundamentals and applications. Benjamin Cummings Science Publishing, Menlo Park, California

    Google Scholar 

  • Bennasar A, Mulet M, Lalucat J, Garcia-Valdes E (2010) PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol 10:118. doi:10.1186/1471-2180-10-118

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavarria M, Nikel PI, Perez-Pantoja D, de Lorenzo V (2013) The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15:1772–1785. doi:10.1111/1462-2920.12069

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2002) Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. J Biol Chem 277:37519–37526. doi:10.1074/jbc.M203762200

    Article  CAS  PubMed  Google Scholar 

  • de Bont JA, Vorage MJ, Hartmans S, van den Tweel WJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol 52:677–680

    PubMed  PubMed Central  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated benzenes. Biodegradation 19:463–480. doi:10.1007/s10532-007-9155-1

    Article  CAS  PubMed  Google Scholar 

  • Gregoraszczuk EL et al (2014) Hexachlorobenzene and pentachlorobenzene accumulation, metabolism and effect on steroid secretion and on CYP11A1 and CYP19 expression in cultured human placental tissue. Reprod Toxicol 43:102–110. doi:10.1016/j.reprotox.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454. doi:10.1038/nrmicro3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova IA, Kambarev S, Popova RA, Naumovska EG, Markoska KB, Dushkin CD (2010) Determination of Pseudomonas putida live cells with classic cultivation and staining with “Live/Dead Baclight Bacterial Viability Kit”. Biotechnology & Biotechnological Equipment 24:567–570. doi:10.1080/13102818.2010.10817898

    Article  Google Scholar 

  • Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 264:1488–1496

    CAS  PubMed  Google Scholar 

  • Joux F, Lebaron P (1997) Ecological implications of an improved direct viable count method for aquatic bacteria. Appl Environ Microbiol 63:3643–3647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao DP, Zhou Q, Chen CY, Quan ZX (2012) Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiol 12:66. doi:10.1186/1471-2180-12-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthiesen R, Trelle MB, Hojrup P, Bunkenborg J, Jensen ON (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4:2338–2347. doi:10.1021/pr050264q

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki S (1977) Photochemical dechlorination of PCBs. Chem Eng Sci 32:1205–1210

    Article  CAS  Google Scholar 

  • Mohammad SM, Dennis GP (1997) Electrochemical reduction of di-, tri- and tetrahalobenzenes at carbon cathodes in dimethylformamide. Evidence for a halogen dance during the electrolysis of 1,2,4,5-tetrabromobenzene. J Electroanal Chem 435:47–53

    Article  Google Scholar 

  • Neilson AH (1996) An environmental perspective on the biodegradation of organochlorine xenobiotics. Int Biodeter Biodeg 37:3–21

    Article  CAS  Google Scholar 

  • Netuschil L, Auschill TM, Sculean A, Arweiler NB (2014) Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms—which stain is suitable? BMC Oral Health 14:2. doi:10.1186/1472-6831-14-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldenhuis R, Kuijk L, Lammers A, Janssen DB, Witholt B (1989) Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. Appl Microbiol Biotechnol 30:211–217

    Article  CAS  Google Scholar 

  • Oliver BG, Nicol KD (1982) Chlorobenzenes in sediments, water, and selected fish from Lakes Superior, Huron, Erie, and Ontario. Environ Sci Technol 16:532–536

    Article  CAS  Google Scholar 

  • Poole LB, Ellis HR (1996) Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35:56–64. doi:10.1021/bi951887s

    Article  CAS  PubMed  Google Scholar 

  • Robinson PE, Mack GA, Remmers J, Levy R, Mohadjer L (1990) Trends of PCB, hexachlorobenzene, and beta-benzene hexachloride levels in the adipose tissue of the U.S. population. Environ Res 53:175–192

    Article  CAS  PubMed  Google Scholar 

  • Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444. doi:10.1016/j.copbio.2008.07.012

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia LA, Storz G, Brodsky MH, Lai A, Ames BN (1990) Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J Biol Chem 265:10535–10540

    CAS  PubMed  Google Scholar 

  • Thomas RS, Gustafson DL, Pott WA, Long ME, Benjamin SA, Yang RS (1998) Evidence for hepatocarcinogenic activity of pentachlorobenzene with intralobular variation in foci incidence. Carcinogenesis 19:1855–1862

    Article  CAS  PubMed  Google Scholar 

  • Winn LM (2003) Homologous recombination initiated by benzene metabolites: a potential role of oxidative stress. Toxicol Sci 72:143–149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the Genomics and Proteomics Units at the Advanced Core Research Facilities (SGIker) of the University of the Basque Country (UPV/EHU) for the technical support and assistance provided. The work was supported by the Basque Government (grant PRE-2013-1-901 and SAIOTEK grant S-PE12UN84) and by IKERBASQUE (Basque Foundation for Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Kaberdin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

.

ESM 1

(PDF 85 kb)

.

ESM 2

(PDF 24 kb)

.

ESM 3

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montánchez, I., Kaberdina, A.C., Sevillano, E. et al. Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene. Folia Microbiol 62, 325–334 (2017). https://doi.org/10.1007/s12223-017-0501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-017-0501-3

Keywords

Navigation