Skip to main content
Log in

Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics–calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p > 0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe F, Miyauchi H, Uchijima A, Yaeshima K, Iwatsuki K (2009) Effect of storage temperature and water activity on survival of bifidobacteria in powder form. Inter J Dairy Tech 62:234–239

    Article  Google Scholar 

  • Adamson AW (1982) Physical chemistry of surfaces. Wiley, New York

    Google Scholar 

  • Annan N, Borza A, Hansen L (2008) Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703 T during exposure to simulated gastro-intestinal conditions. Food Res Int 41(2):184–193

    Article  CAS  Google Scholar 

  • Arslanoglu S, Moro G, Boehm G (2007) Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr 137(11):2420–2425

    PubMed  CAS  Google Scholar 

  • Arslanoglu S, Moro G, Schmitt J, Tandoi L, Rizzardi S, Boehm G (2008) Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 6:1091–1097

    Google Scholar 

  • Bielecka M, Biedrzycka E, Majkowska A (2002) Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res Int 35(2–3):125–131

    Article  CAS  Google Scholar 

  • Broadbent J, Lin C (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiol 39(1):88–102

    Article  CAS  Google Scholar 

  • Carvalho A, Silva J, Ho P, Teixeira P, Malcata F, Gibbs P (2003) Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans. J Appl Microbiol 94(6):947–952

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 14(10):835–847

    Article  CAS  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Meth 56(1):27–35

    Article  CAS  Google Scholar 

  • Charteris W, Kelly P, Morelli L, Collins J (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84(5):759–768

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Chen M, Liu J, Lin C, Chiu H (2005) Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. J Food Sci 70(5):M260–M266

    Article  CAS  Google Scholar 

  • Coppa G, Bruni S, Morelli L, Soldi S, Gabrielli O (2004) The first prebiotics in humans: human milk oligosaccharides. J Clin Gastroenterol 38:S80–S83

    Article  PubMed  CAS  Google Scholar 

  • Corcoran B, Stanton C, Fitzgerald G, Ross R (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71(6):3060–3067

    Article  PubMed  CAS  Google Scholar 

  • Dave R, Shah N (1997) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int Dairy J 7(1):31–41

    Article  Google Scholar 

  • Ding W, Shah N (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci 74(2):M100–M107

    Article  PubMed  CAS  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:33–50

    Google Scholar 

  • FAO/WHO (2001) Report of a joint FAO/WHO expert consultation on “Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria”

  • Gilliland S, Speck M (1977) Instability of Lactobacillus acidophilus in yogurt. J Dairy Sci 60(9):1394–1398

    Article  Google Scholar 

  • Gueimonde M, Laitinen K, Salminen S, Isolauri E (2007) Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 92(1):64–66

    Article  PubMed  Google Scholar 

  • Harmsen H, Wildeboer-Veloo A, Raangs G, Wagendorp A, Klijn N, Bindels J, Welling G (2000) Analysis of intestinal biota development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61–67

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Lu Z, Yuan Y, Lü F, Bie X (2006) Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology. J Ind Microbiol Biot 33(1):55–61

    Article  CAS  Google Scholar 

  • Joglekar AM, May AT (1987) Product excellence through design of experiments. Cereal Foods World 32(12):857–868

    Google Scholar 

  • Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Iss Intest Microbiol 3(2):39–48

    CAS  Google Scholar 

  • Kearney L, Upton M, Mc Loughlin A (1990) Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Appl Environ Microbiol 56(10):3112–3116

    PubMed  CAS  Google Scholar 

  • Kebary K, Hussein S, Badawi R (1998) Improving viability of bifidobacteria and their effect on frozen ice milk. Egypt J Dairy Sci 26:319–338

    Google Scholar 

  • Kim KI, Yoon YH (1995) A study on the preparation of direct vat lactic acid bacterial starter. Korean J Dairy Sci 17(2):129–134

    Google Scholar 

  • Kim H, Kamara B, Good I, Enders G (1988) Method for the preparation of stabile microencapsulated lactic acid bacteria. J Ind Microbiol Biot 3(4):253–257

    Google Scholar 

  • Kotikalapudi B (2009) Characterization and encapsulation of probiotic bacteria using a pea-protein alginate matrix. Master thesis, University of Saskatchewan. Saskatoon, Saskatchewan, Canada

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13(1):3–13

    Article  CAS  Google Scholar 

  • Krückeberg St, Weißbrodt J, Kunz B. Mikroverkapselung bioaktiver Substanzen für die Nutzung in der Lebensmittelverarbeitung (Poster). 20 Jahrestagung der Biotechnologen, Juni 2002, Wiesbaden, Germany

  • Lee J, Ye L, Landen W (2000) Optimization of an extraction procedure for the quantification of vitamin E in tomato and broccoli using response surface methodology. J Food Compost Anal 13(1):45–57

    Article  CAS  Google Scholar 

  • Lian W, Hsiao H, Chou C (2003) Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int J Food Microbiol 86(3):293–301

    Article  PubMed  Google Scholar 

  • Martin R, Jimenez E, Heilig H, Fernandez L, Marin M, Zoetendal E, Rodriguez J (2008) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-DGGE and qRTi-PCR. Appl Environ Microbiol 75:965–969

    Article  PubMed  Google Scholar 

  • Mirhosseini H, Tan C, Hamid N, Yusof S (2008) Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocolloids 22(7):1212–1223

    Article  CAS  Google Scholar 

  • Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J, Stahl B, Boehm G (2002) Dosage-related bifidogenic effects of galacto-and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr 34(3):291–295

    Article  PubMed  CAS  Google Scholar 

  • Mortazavian A, Razavi S, Ehsani M, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol (IJB) 5(1):1–18

    CAS  Google Scholar 

  • Mosilhey S (2003) Influence of different capsule materials on the physiological properties of microencapsulated Lactobacillus acidophilus. Ph.D. thesis, University of Bonn

  • Muller JA, Ross RP, Fitzgerald GF, Stanton C (2009) Prebiotics and probiotics science and technology, manufacture of probiotic bacteria. Charalampopoulos D and Rastall RA (eds) Springer, pp. 725-59

  • Orrhage K, Nord C (1999) Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatrica 88:47–57

    Article  PubMed  CAS  Google Scholar 

  • Otero M, Espeche M, Nader-Macias M (2007) Optimization of the freeze-drying media and survival throughout storage of freeze-dried Lactobacillus gasseri and Lactobacillus delbrueckii subsp. delbrueckii for veterinarian probiotic applications. Process Biochem 42(10):1406–1411

    Article  CAS  Google Scholar 

  • Reuter G (1990) Bifidobacteria cultures as components of yoghurt-like products. Bifidobacteria Microflora 9(2):107–118

    Google Scholar 

  • Roberfroid MB (2001) Prebiotics: preferential substrates for specific germs? Am J Clin Nutr 73(2):406–409

    Google Scholar 

  • Saarela M, Lähteenmäki L, Crittenden R, Salminen S, Mattila-Sandholm T (2002) Gut bacteria and health foods—the European perspective. Int J Food Microbiol 78(1–2):99–117

    Article  PubMed  CAS  Google Scholar 

  • Saarela M, Virkajärvi I, Alakomi H, Mattila Sandholm T, Vaari A, Suomalainen T, Mättö J (2005) Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk based ingredients. J Appl Microbiol 99(6):1330–1339

    Article  PubMed  CAS  Google Scholar 

  • Schillinger U (1999) Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage. Int J Food Microbiol 47(1–2):79–87

    Article  PubMed  CAS  Google Scholar 

  • Schwab C, Vogel R, Gänzle M (2007) Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1. 106 during freeze-drying. Cryobiol 55(2):108–114

    Article  CAS  Google Scholar 

  • Shah N, Lankaputhra W (1997) Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. Int Dairy J 7(5):349–356

    Article  Google Scholar 

  • Shah N, Ravula R (2000) Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol 55(3):139–144

    Google Scholar 

  • Shamekhi F, Shuhaimi M, Ariff A, Manap YA (2011) Optimization of a cryoprotective medium for infant formula probiotic applications using response surface methodology. Ann Microbiol Pages 1–11. doi:10.1007/s13213-011-0328-0

  • Sheu T, Marshall R (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 58(3):557–561

    Article  Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1–2):47–55

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Griffiths M (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. Int J Food Microbiol 61(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Sung HH (1997) Enhancing survival of lactic acid bacteria in ice cream by natural encapsulation. Diss Abstr Int 13(9):5407

    Google Scholar 

  • Thompson DB (2000) Strategies for the manufacture of resistant starch. Trends Food Sci Technol 11:245–253

    Article  CAS  Google Scholar 

  • Valerio F, De Bellis P, Lonigro S, Morelli L, Visconti A, Lavermicocca P (2006) In vitro and in vivo survival and transit tolerance of potentially probiotic strains carried by artichokes in the gastrointestinal tract. Appl Environ Microbiol 72(4):3042

    Article  PubMed  CAS  Google Scholar 

  • Wang YC, Yu RC, Chou CC (2004) Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int J Food Microbiol 93:209–217

    Article  PubMed  Google Scholar 

  • Weng W, Liu W, Lin W (2001) Studies on the optimum models of the dairy product Kou Woan Lao using response surface methodology. Asian Aust J Anim Sci 14(10):1470–1476

    Google Scholar 

  • Zhao G, Zhang G (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze drying. J Appl Microbiol 99(2):333–338

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Shuhaimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamekhi, F., Shuhaimi, M., Ariff, A. et al. Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions. Folia Microbiol 58, 91–101 (2013). https://doi.org/10.1007/s12223-012-0183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0183-9

Keywords

Navigation