Skip to main content
Log in

Deciphering the metabolic capabilities of a lipase producing Pseudomonas aeruginosa SL-72 strain

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Pseudomonads have been reported for their metabolic, nutritional and ecological versatility, which motivated us to prospect the metabolic profile of a lipolytic strain Pseudomonas aeruginosa SL-72. The strain SL-72 was found to produce high levels of lipase and pectinase (1,555.62 IU/mL and 1,490.33 IU/mL, respectively), esterase and amylase, besides low levels of xylanase, proteinase and cellulase. The strain also tested positive for different plant growth-promoting traits—production of ammonia, hydrogen cyanide, siderophores, phosphate solubilization, nitrate reduction and antifungal activity. The high levels of activity of aryl sulphatase, alkaline phosphatase and fluorescein diacetate hydrolase makes it a useful strain for enhanced nutrient cycling in soil. The strain SL-72 produced rhamnolipids, a biosurfactant and its production was enhanced when starch was used as carbon source (0.256 g/L) and utilized polycyclic hydrocarbon compounds viz. anthracene, phenanthrene, pyrene, fluorene and its mixture. The multifaceted nature of the culture illustrates its promise in bioremediation, industry, besides its use as an inoculant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Inter laboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Banat IM (2000) Les biosurfactant, plus que jamais solicites. Biofutur 198:44–47

    Article  Google Scholar 

  • Barben J, Hafen G, Schmid J (2005) Pseudomonas aeruginosa in public swimming pools and bathroom water of patients with cystic fibrosis. J Cyst Fibros 4:227–231

    Article  PubMed  Google Scholar 

  • Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449

    Article  PubMed  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, alfa and beta. Methods Enzymol 1:149–58

    Article  CAS  Google Scholar 

  • Blanco A, Pastor FIJ (1993) Characterization of cellulase-free xylanases from the newly isolated Bacillus sp. strain BP-23. Can J Microbiol 39:1162–1166

    Article  CAS  Google Scholar 

  • Bragger JM, Daniel RM, Morgan HW (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubabacteria. Appl Microbiol Biotechnol 31:556–561

    Article  CAS  Google Scholar 

  • Bushnell LD, Haas HF (1941) The utilisation of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673

    PubMed  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Benjamin Cummings, Menlo Park, CA, pp 133–198

  • Cardenas J, Alvarez E, de Castro-Alvarez MS, Sanchez-Montero JM, Valmaseda M, Elson SW, Sinisterra JV (2001) Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J Mol Catal B Enzyme 14:111–123

    Article  CAS  Google Scholar 

  • Charles TC, Nester EW (1993) A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175:6614–6625

    PubMed  CAS  Google Scholar 

  • Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466

    PubMed  CAS  Google Scholar 

  • Colwell RR, Grigorova R (1987) Current methods for classification of microorganisms. 19:31

  • Cooper DG, Goldenberg PG (1987) Surface-active agents from two Bacillus sp. Appl Environ Microbial 53:224–229

    CAS  Google Scholar 

  • Dáes J, De Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant—pseudomonas interactions and their importance to biocontrol. Environ Microbiol Reports 2:359–372

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of biosurfactants and their commercial potential. Mcrobiol Mol Biol Rev 61:41–64

    Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for identification of Xanthomonas spp. NZT. Sci 5:393–416

    Google Scholar 

  • El-Saadany RMA, Salem FA, El-Manawaty HK (2006) A high yield of amylase from Aspergillus niger by effect of gamma irradiation. Starch 36:64–66

    Article  Google Scholar 

  • Franken LPG, Marcon NS, Treichel H, Oliveira D, Freire DMG, Dariva C, Destain J, Oliveira JV (2009) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol 3:511–520

    Article  Google Scholar 

  • Gajju H, Bhalla TC, Agarwal HO (1996) Thermostable alkaline protease from thermophilic Bacillus coagulans PB-77. Ind J Microbiol 36:153–155

    Google Scholar 

  • Ghose TK, Bailey HJ, Bisaria VS, Enari TM (1983) Measurement of cellulase activities. Final Recommendations, Commission of BioTechnol. International Union of Pure and Applied Chemistry, pp 1–13

  • Green VS, Stottand DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701

    Article  CAS  Google Scholar 

  • Greenberg AE, Trussel RR, Clesceri LC (1985) Standard methods for examination of water and waste water, 16th edn. American Public Health Association, Washington D.C.

    Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hegeman GD (1966) Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I- Synthesis of enzymes by the wild type. J Bacteriol 91:1140–1154

    PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1–787

    Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  • Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279

    Article  Google Scholar 

  • Jain P, Jain S, Gupta MN (2005) A microwave assay for lipases. Anal Bioanal Chem 381:1480–1482

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Zylstra GJ (1995) Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1. J Bacteriol 177:3095–3103

    PubMed  CAS  Google Scholar 

  • Kok RG, Christoffels VM, Vosman B, Hellingwerf KJ (1993) Growth-phase-dependent expression of the lipolytic system of Acinetobacter calcoaceticus BD413: cloning of a gene encoding one of the esterases. J Gen Microbiol 139:2329–2342

    Article  PubMed  CAS  Google Scholar 

  • Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbial 53:211–213

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic condition by a strain of Bacillus subtilis. J Ind Microbiol 20:48–52

    Article  CAS  Google Scholar 

  • Miller GL (1989) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  Google Scholar 

  • Minjares-Carranco A, Trejo-Aguilar BA, Guillermo A, Viniegra-Gonzalez G (1997) Physiological comparison between pectinase producing mutants of Aspergillus niger adopted either to solid state fermentation or submerged fermentation. Enzyme Microb Technol 21:25–31

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2009) Rapid quantification of a microbial surfactant by a simple turbidometric method. J Microbiol Meth 76:38–42

    Article  CAS  Google Scholar 

  • Nie M, Yin X, Ren C, WangY XuF, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28:635–643

    Article  PubMed  CAS  Google Scholar 

  • Ong PS, Gaucher GM (1973) Protease activity by thermophilic fungi. Can J Microbiol 19:129–133

    Article  PubMed  CAS  Google Scholar 

  • Pelczar MJ, Bard RC, Burnett GW, Conn HJ, Demoss RD, Euans EE, Weiss FA, Jennison MW, Meckee AP, Riker AJ, Warren J, Weeks OB (1957) Manual of microbiological methods. Soc. Amer. Bacteriol. McGraw Hill Book Company, Inc., NY, USA, pp 315

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  Google Scholar 

  • Sarlangue J, Brissaud O, Labreze C (2006) Clinical features of Pseudomonas aeruginosa infections. Arch Pediatr 1:13–16

    Google Scholar 

  • Schwyn B, Neiland JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertiliser dependent efficiency of Pseudomonads containing ACC-deaminase for improving growth, yield and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Jansen R, Nimtz M, Johri BN, Wray V (2007) Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP(3) that reduces damping-off disease in chilli and tomato nurseries. J Nat Prod 70:941–947

    Article  PubMed  CAS  Google Scholar 

  • Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas sp. during growth on mineral agar. Biotechnol Tech 5:265–268

    Article  CAS  Google Scholar 

  • Soriano M, Blanco A, Díaz P, Pastor FIJ (2000) An unusual pectate lyase from a Bacillus sp. with high activity on pectin: cloning and characterisation. Microbiology 146:89–95

    PubMed  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Soil Sci Am Proc 34:225–229

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tian L, Ma P, Zhon J (2002) Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochem 37:1431–1437

    Article  CAS  Google Scholar 

  • Verma S (2011) Isolation and characterization of lipase producing bacterial strains from oil-contaminated soils. Ph.D. Thesis, Banasthali University, India

  • Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Zhou Y, Xu T, Lu B (2009) Rational design of catechol-2,3-dioxygenase for improving the enzyme characteristics. Appl Biochem Biotechnol 162:116–126

    Article  PubMed  Google Scholar 

  • Zhao Z, Wong JW (2009) Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environ Technol 30:291–299

    Article  PubMed  Google Scholar 

  • Zhu L, Zhang M (2008) Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environ Pollut 156:46–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Banasthali University and Division of Microbiology, Indian Agricultural Research Institute for extending the facilities for undertaking the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Nain.

Electronic supplementary material

Fig. 1. Screening of Extracellular enzyme activity of P. aeruginosa SL-72: (a) Lipase. (b) Esterase. (c) Xylanase. (d) Cellulase. (e) Proteinase. (f) Pectinase. (g) Amylase. (h) Acrylamidase.

Fig. 2. In vitro screening of PGP traits of lipolytic strain P. aeruginosa SL-72: (a) NH3 production. (b) Siderophore production. (c) Phosphate solubilisation. (d) HCN production. (e) Inhibition of Macrophomnia Phaseolina by P. aeruginosa SL-72.

Fig. 3. Screening of P. aeruginosa SL-72 for its biosurfactant production potential: (a) β-hemolysis. (b) Rhamnolipid production.

Fig. 4. Catechol-2,3 dioxygenase activity and PAH utilization pattern of P. aeruginosa SL-72 (a) Catechol-2,3 dioxygenase. (b) Anthracene. (c) Fluorene. (d) Phenanthrene. (e) Pyrene. (f) PAH mixture.

ESM 1

(PDF 295 kb)

Supplementary Table 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S., Prasanna, R., Saxena, J. et al. Deciphering the metabolic capabilities of a lipase producing Pseudomonas aeruginosa SL-72 strain. Folia Microbiol 57, 525–531 (2012). https://doi.org/10.1007/s12223-012-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0163-0

Keywords

Navigation