Skip to main content
Log in

Bioinformatic evidence and characterization of novel putative large conjugative transposons residing in genomes of genera Bacteroides and Prevotella

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Bioinformatic evidence of the presence of a large conjugative transposon in ruminal bacterium Prevotella bryantii B14T is presented. The described transposon appears to be related to another large conjugative transposon CTnBST, described in Bacteroides uniformis WH207 and to the conjugative transposon CTn3-Bf, which was observed in the genome of Bacteroides fragilis strain YCH46. All three transposons share tra gene regions with high amino acid identity and clearly conserved gene order. Additionally, a second conserved region consisting of hypothetical genes was discovered in all three transposons and named the GG region. This region served as a specific sequence signature and made possible the discovery of several other apparently related hypothetical conjugative transposons in bacteria from the genus Bacteroides. A cluster of genes involved in sugar utilization and metabolism was discovered within the hypothetical CTnB14, to a certain extent resembling the polysaccharide utilization loci which were described recently in some Bacteroides strains. This is the first firm report on the presence of a large mobile genetic element in any strain from the genus Prevotella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accetto T, Avguštin G (2011) Inability of Prevotella bryantii to form a functional Shine–Dalgarno interaction reflects unique evolution of ribosome binding sites in Bacteroidetes. PLoS One 6:e22914

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Weightman AJ, Fry JC (2002) PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res 30:3481–3489

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K (1987) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bayley DP, Rocha ER, Smith CJ (2000) Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193:149–154

    Article  PubMed  CAS  Google Scholar 

  • Bjursell MK, Martens EC, Gordon JI (2006) Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281:36269–36279

    Article  PubMed  CAS  Google Scholar 

  • Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328

    PubMed  CAS  Google Scholar 

  • Chen S, Bagdasarian M, Kaufman MG, Walker ED (2007) Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 73:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gorenc G, Accetto T, Avguštin G (2009) The search for conjugative transposon in rumen bacterium Prevotella bryantii B14. Acta Agric Slov 94:147–152

    CAS  Google Scholar 

  • Gupta RS, Lorenzini E (2007) Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evol Biol 7:71

    Article  PubMed  Google Scholar 

  • Gupta A, Vlamakis H, Shoemaker N, Salyers AA (2003) A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol 69:6455–6463

    Article  PubMed  CAS  Google Scholar 

  • Hobson PN (1969) Rumen bacteria. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol. 3B. Academic, London, pp 133–149

    Google Scholar 

  • Hugenholtz PE (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2). Article Number: 0003.1

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H, Okada H, Kuhara S, Hattori M, Hayashi T, Ohnishi Y (2004) Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A 101:14919–14924

    Article  PubMed  CAS  Google Scholar 

  • Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457

    Article  PubMed  CAS  Google Scholar 

  • Morrison M, Daugherty S, Nelson W, Davidsen T, Nelson K, The North American Consortium for Fibrolytic Ruminal Bacteria (2010) The FibRumBa Database: a resource for biologists with interests in gastrointestinal microbial ecology, plant biomass degradation, and anaerobic microbiology. Microb Ecol 59:212–213

    Article  PubMed  Google Scholar 

  • Nikolich MP, Shoemaker NB, Salyers AA (1994) Characterization of a new type of Bacteroides conjugative transposon, TcrEmr 7853. J Bacteriol 176:6606–6612

    PubMed  CAS  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics (Oxford, England) 16(10):944–945

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salyers AA, Shoemaker NB, Li L-Y (1995) In the driver’s seat: the Bacteroides conjugative transposons and the elements they mobilize. J Microbiol 177:5727–5731

    CAS  Google Scholar 

  • Salyers AA, Whittle G, Shoemaker NB (2004) Conjugative and mobilizable transposons. In: Miller RV, Day MJ (eds) Microbial evolution: gene establishment, survival and exchange. ASM, Washington, pp 125–142

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol. 1, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schlesinger DJ, Shoemaker NB, Salyers AA (2007) Possible origins of CTnBST, a conjugative transposon found recently in a human colonic Bacteroides strain. Appl Environ Microbiol 73:4226–4233

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker NB, Wang GR, Salyers AA (1992) Evidence for natural transfer of tetracycline resistance gene between bacteria from the human colon and bacteria from bovine rumen. Appl Environ Microbiol 58:1313–1320

    PubMed  CAS  Google Scholar 

  • Sonnenburg ED, Sonnenburg JL, Manchester JK, Hansen EE, Chiang HC, Gordon JI (2006) A hybrid twocomponent system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. Proc Natl Acad Sci U S A 103:8834–8839

    Article  PubMed  CAS  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Google Scholar 

  • Vingadassalom D, Kolb A, Mayer C, Rybkine T, Collatz F et al (2005) An unusual primary sigma factor in the Bacteroidetes phylum. Mol Microbiol 56:888–902

    Article  PubMed  CAS  Google Scholar 

  • Whittle G, Shoemaker NB, Salyers AA (2002) The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci 59:2044–2054

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human—Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Slovenian Research Agency (research program P4-0097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorazd Avguštin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorenc, K., Accetto, T. & Avguštin, G. Bioinformatic evidence and characterization of novel putative large conjugative transposons residing in genomes of genera Bacteroides and Prevotella . Folia Microbiol 57, 285–290 (2012). https://doi.org/10.1007/s12223-012-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0126-5

Keywords

Navigation