Skip to main content
Log in

Irpex lacteus, a white-rot fungus with biotechnological potential — review

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

White-rot fungi that are efficient lignin degraders responsible for its turnover in nature have appeared twice in the center of biotechnological research — first, when the lignin degradation process started being systematically investigated and major enzyme activities and mechanisms involved were described, and second, when the huge remediation potential of these organisms was established. Originally, Phanerochaete chrysosporium became a model organism, characterized by a secondary metabolism regulatory pattern triggered by nutrient (mostly nitrogen) limitation. Last decade brought evidence of more varied regulatory patterns in white-rot fungi when ligninolytic enzymes were also abundantly synthesized under conditions of nitrogen sufficiency. Gradually, research was focused on other species, among them Irpex lacteus showing a remarkable pollutant toxicity resistance and biodegradation efficiency. Systematic research has built up knowledge of biochemistry and biotechnological applicability of this fungus, stressing the need to critically summarize and estimate these scattered data. The review attempts to evaluate the information on I. lacteus focusing on various enzyme activities and bioremediation of organopollutants in water and soil environments, with the aim of mediating this knowledge to a broader microbiological audience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL-20:

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexa-azaisowurtzitane

DB3:

Disperse Blue 3, anthraquinone dye

IEF:

isoelectric focusation

LC-MS:

liquid chromatography-mass spectrometry

LiP:

lignin peroxidase

MAs:

mobilizing agents

MEG:

malt extract-glucose (medium)

MnP:

manganese-dependent peroxidase

PAHs:

oligocyclic (‘polycyclic’) aromatic hydrocarbons

PCP:

pentachlorophenol

Poly R-478:

polymeric dye (Sigma, USA)

PUF:

polyurethane foam

RBBR:

Remazol Brilliant Blue R, anthraquinone dye

RO16:

Reactive Orange 16, azo dye

TBR:

trickle-bed reactor

TNT:

2,4,6-trinitrotoluene

USEPA:

US Environmental Protection Agency

References

  • Aggelis G., Ehaliotis C., Nerud F., Stoychev I., Lyberatos G., Zervakis G.I.: Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl.Microbiol.Biotechnol.59, 353–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Alexandropoulos C.J., Mims C.W., Blackwell M.: Introductory Mycology, 4th ed. JohnWiley and Sons Inc., New York 1996.

    Google Scholar 

  • Amano Y., Kanda T.: New insights into cellulose degradation by cellulases and related enzymes. Trends Glycosci.Glycotechnol.14, 27–34 (2002).

    CAS  Google Scholar 

  • Amano Y., Kanda T., Okazaki M.: Mode of action of 2 endo-1,4-β-xylanases from Irpex lacteus towards rice-straw xylan. Mokuzai Gakkaishi40, 57–63 (1994a).

    CAS  Google Scholar 

  • Amano Y., Okazaki M., Mitani M., Kanda T.: Transglycosyl reaction of endo-1,4-β-xylanases from Irpex lacteus on aryl β-xylosides. Mokuzai Gakkaishi40, 308–314 (1994b).

    CAS  Google Scholar 

  • Amano Y., Shiroishi M., Nisizawa K., Hoshino E., Kanda T.: Pine substrate specificities of four exo-type cellulases produced by Aspergillus niger, Trichoderma reesei, and Irpex lacteus on (1→3),(1→4)-β-d-glucans and xyloglucan. J.Biochem.120, 1123–1129 (1996).

    CAS  PubMed  Google Scholar 

  • Baborová P., Moder M., Baldrian P., Cajthamlová K., Cajthaml T.: Purification of a new manganese peroxidase of the whiterot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res.Microbiol.157, 248–253 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Bhatt M., Patel M., Rawal B., Novotný Č., Molitoris H.P., Šaškek V.: Biological decolorization of the synthetic dye RBBR in contaminated soil. World J.Microbiol.Biotechnol.16, 195–198 (2000).

    Article  CAS  Google Scholar 

  • Bhatt M., Cajthaml T., Šašek V.: Mycoremediation of PAH-contaminated soil. Folia Microbiol.47, 255–258 (2002).

    Article  CAS  Google Scholar 

  • Binder M., Hibbett D.S., Larsson K.H., Larsson E., Langer E., Langer G.: The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst.Biodivers.3, 113–157 (2005).

    Article  Google Scholar 

  • Breitenbach J., Kränzlin F.: Pilze der Schweiz, Band 2, Heterobasidiomycetes, Aphyllophorales, Gastromycetes, pp. 176–177. Verlag Mykologia, Luzern (Switzerland) 1986.

    Google Scholar 

  • Bumpus J.A., Tien M., Wright D., Aust S.D.: Oxidation of persistent environmental pollutants by a white rot fungus. Science228, 1434–1436 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Buzina W., Lass-flörl C., Kropshofer G., Freund M.C., Marth E.: The polypore mushroom Irpex lacteus, a new causative agent of fungal infection. J.Clin.Microbiol.43, 2009–2011 (2005).

    Article  PubMed  Google Scholar 

  • Byss M., Elhottová D., Tříska J., Baldrian P.: Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere73, 1518–1523 (2008).

    Article  CAS  Google Scholar 

  • Cajthaml T., Moder M., Kacer P., Šašek V., Popp P.: Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J.Chromatogr. A974, 213–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cajthaml T., Erbanová P., Šašek V., Moeder M.: Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere64, 560–564 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Cajthaml T., Erbanová P., Kollmann A., Novotný Č., Šašek V., Mougin C.: Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol.53, 289–294 (2008).

    Article  CAS  Google Scholar 

  • Camarero S., Sarkar S., Ruiz-duenas F.J., Martínez M.J., Martínez A.T.: Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J.Biol. Chem.274, 10324–10330 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Capelari M., Zadrazil F.: Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiol.42, 481–487 (1997).

    Article  CAS  Google Scholar 

  • Casieri L., Varese G.C., Anastasi A., Prigione V., Svobodová K., Filipello Marchisio V., Novotný Č.: Decolorization and detoxification of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol.53, 44–52 (2008).

    Article  CAS  Google Scholar 

  • CBS Aphyllophorales Database: http://www.cbs.knaw.nl/databases/aphyllo/database.aspx, 2009.

  • Chivukula M., Renganathan V.: Phenolic azo-dye oxidation by laccase from Pyricularia oryzae. Appl.Environ.Microbiol.61, 4374–4377 (1995).

    CAS  PubMed  Google Scholar 

  • Eaton D.C.: Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium, a ligninolytic fungus. Enzyme Microb. Technol.7, 194–196 (1985).

    CAS  Google Scholar 

  • Eberhardt T.L., Han J.S., Micales J.A., Young R.A.: Decay resistance in conifer seed cones — role of resin acids as inhibitors of decomposition by white-rot fungi. Holzforschung48, 278–284 (1994).

    Article  CAS  Google Scholar 

  • Fournier D., Montell-rivera F., Halasz A., Bhatt M., Hawari J.: Degradation of CL-20 by white-rot fungi. Chemosphere63, 175–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto Z., Fujii Y., Kaneko S., Kobayashi H., Mizuno H.: Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. J.Mol.Biol.341, 1227–1235 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson R.L.: Wood-rotting fungi of North America. Mycologia72, 1–49 (1980).

    Article  Google Scholar 

  • Grenier J., Potvin C., Asselin A.: Some fungi express β-1,3-glucanases similar to thaumatin-like proteins. Mycologia92, 841–848 (2000).

    Article  CAS  Google Scholar 

  • Guieysse B., Bernhoft I., Andersson B.E., Henrysson T., Olsson S., Mattiasson B.: Degradation of acenaphthene, phenanthrene and pyrene in a packed-bed biofilm reactor. Appl.Microbiol.Biotechnol.54, 826–831 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hamada N., Takeda T., Amano Y., Shimosaka M., Kanda T., Okazaki M.: Characterization of a protease-resistant endotype-cellulase from the basidiomycete Irpex lacteus. Sen-I-Gakkaishi55, 134–142 (1999a).

    CAS  Google Scholar 

  • Hamada N., Ishikawa K., Fuse N., Kodaira R., Shimosaka M., Amano Y., Kanda T., Okazaki M.: Purification, characterization and gene analysis of exo-cellulase II (Ex-2) from the white rot basidiomycete Irpex lacteus. J.Biosci.Bioeng.87, 442–451 (1999b).

    Article  CAS  PubMed  Google Scholar 

  • Hamada N., Okumura R., Fuse N., Kodaira R., Shimosaka M., Kanda T., Okazaki M.: Isolation and transcriptional analysis of a cellulase gene (cel1) from the basidiomycete Irpex lacteus. J.Biosci.Bioeng.87, 97–102 (1999c).

    Article  CAS  PubMed  Google Scholar 

  • Hamada N., Fuse N., Shimosaka M., Kodaira R., Amano Y., Kanda T., Okazaki M.: Cloning and characterization of a new exocellulase gene, cel3, in Irpex lacteus. FEMS Microbiol.Lett.172, 231–237 (1999d).

    Article  CAS  Google Scholar 

  • Hamada N., Kodaira R., Nogawa M., Shinji K., Ito R., Amano Y., Shimosaka M., Kanda T., Okazaki M.: Role of cellulosebinding domain of exocellulase I from white rot basidiomycete Irpex lacteus. J.Biosci.Bioeng.91, 359–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hatakka A.: Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev.13, 125–135 (1994).

    Article  CAS  Google Scholar 

  • Hayashi M., Wada K., Munakata K.: New nematocidal metabolites from a fungus Irpex lacteus. Agric.Biol.Chem.45, 1527–1529 (1981).

    CAS  Google Scholar 

  • Hoebler C., Brillouet J.M.: Purification and properties of an endo-(1→4)-β-D-xylanase from Irpex lacteus (Polyporus tulipiferae). Carbohydr.Res.128, 141–155 (1984).

    Article  CAS  Google Scholar 

  • Hofrichter M.: Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb.Technol.30, 454–466 (2002).

    Article  CAS  Google Scholar 

  • Hoshino E., Kanda T., Sasaki Y., Nisizawa K.: Adsorption mode of exo- and endo-cellulases from Irpex lacteus (Polyporus tulipiferae) on cellulose with different crystallinities. J. Biochem. (Tokyo) 111, 600–605 (1992).

    CAS  Google Scholar 

  • Hoshino E., Sasaki Y., Mori K., Okazaki M., Nisizawa K., Kanda T.: Electron microscopic observation of cotton cellulose degradation by exo- and endo-type cellulases from Irpex lacteus. J.Biochem. (Tokyo) 114, 236–245 (1993a).

    CAS  Google Scholar 

  • Hoshino E., Sasaki Y., Okazaki M., Nisizawa K., Kanda T.: Mode of action of exo- and endo-type cellulases from Irpex lacteus in the hydrolysis of cellulose with different crystallinities. J.Biochem. (Tokyo) 114, 230–235 (1993b).

    CAS  Google Scholar 

  • Hoshino E., Kubota Y., Okazaki M., Nisizawa K., Kanda T.: Hydrolysis of cotton cellulose by exo-type and endo-type cellulases from Irpex lacteus — differential scanning calorimetric study. J.Biochem.115, 837–842 (1994a).

    CAS  PubMed  Google Scholar 

  • Hoshino E., Nomura M., Takai M., Okazaki M., Nisizawa K., Kanda T.: Action of exo-type and endo-type cellulases from Irpex lacteus on Valonia cellulose. J.Ferment.Bioeng.77, 496–502 (1994b).

    Article  CAS  Google Scholar 

  • Hoshino E., Shiroishi M., Amano Y., Nomura M., Kanda T.: Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J.Ferment.Bioeng.84, 300–306 (1997).

    Article  CAS  Google Scholar 

  • Hwang S.S., Song H.G.: Biodegradation of pyrene by the white rot fungus, Irpex lacteus. J.Microbiol.Biotechnol.10, 344–348 (2000).

    CAS  Google Scholar 

  • Hwang S.S., Choi H.T., Song H.G.: Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus. J.Microbiol.Biotechnol.18, 767–772 (2008).

    CAS  PubMed  Google Scholar 

  • ISO Standard: Water quality — determination of inhibitory effect of water samples on the light emission on Vibrio fischeri (luminiscent bacteria test) — part 3: method using freeze-dried bacteria. ISO 11348-3, The International Organization for Standardization, Geneva (Switzerland) 1998.

  • ISO/FDIS Standard: Water quality — determination of the toxic effect of water constituents and waste water to duckweed Lemna minor — duckweed growth inhibition test. ISO/FDIS 20079, The International Organization for Standardization, Geneva Switzerland) 2005.

  • Kalina T., Váňa J.: Cyanophytes, Algae, Fungi, Bryophytes and Similar Organisms in Recent Biology, p. 242. (In Czech) Karolinum, Prague 2005.

  • Kanda T., Nisizawa K.: Exocellulase of Irpex lacteus (Polyporus tulipiferae). Methods Enzymol.160, 403–408 (1988).

    Article  CAS  Google Scholar 

  • Kanda T., Wakabayashi K., Nisizawa K.: Purification and properties of an endocellulase of avicelase type from Irpex lacteus (Polyporus tulipiferae). J.Biochem. (Tokyo) 79, 977–988 (1976a).

    CAS  Google Scholar 

  • Kanda T., Wakabayashi K., Nisizawa K.: Xylanase activity of an endo-cellulase of carboxymethyl-cellulose type from Irpex lacteus (Polyporus tulipiferae). J.Biochem. (Tokyo) 79, 989–995 (1976b).

    CAS  Google Scholar 

  • Kanda T., Nakakubo S., Wakabayashi K., Nisizawa K.: Purification and properties of an exo-cellulase of avicelase type from a wood-rotting fungus, Irpex lacteus (Polyporus tulipiferae). J.Biochem.84, 1217–1226 (1978).

    CAS  PubMed  Google Scholar 

  • Kanda T., Wakabayashi K., Nisizawa K.: Purification and properties of of a lower molecular weight endo-cellulase from Irpex lacteus (Polyporus tulipiferae). J. Biochem. (Tokyo) 87, 1625–1634 (1980).

    CAS  Google Scholar 

  • Kanda T., Amano Y., Nisizawa K.: Purification and properties of two endo-1,4-β-xylanases from Irpex lacteus (Polyporus tulipiferae). J.Biochem. (Tokyo) 98, 1545–1554 (1985).

    CAS  Google Scholar 

  • Kanda T., Brewer C.F., Okada G., Hehre E.J.: Hydration of cellobial by exo- and endo-type cellulases: evidence for catalytic flexibility of glycosylases. Biochemistry25, 1159–1165 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Kanda T., Yatomi H., Makishima S., Amano Y., Nisizawa K.: Substrate specificities of exo- and endo-type cellulases in the hydrolysis of β-(1→3)- and β-(1→4)-mixed D-glucans. J.Biochem. (Tokyo) 105, 127–132 (1989).

    CAS  Google Scholar 

  • Kasinath A., Novotný Č., Svobodová K., Patel K.C., Šašek V.: Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb.Technol.32, 167–173 (2003).

    Article  CAS  Google Scholar 

  • Kawabata Y., Kusakabe I.: α-Glucuronidase activities of Aspergillus niger 5–16 and basidiomycetes. Mokuzai Gakkaishi40, 1251–1253 (1994).

    CAS  Google Scholar 

  • Kawabata Y., Nanri T., Uchida H., Kobayashi H., Kusakabe I.: α-Glucuronidase-producing ability of basidiomycetes using 2-O-(α-d-glucopyranosyluronic acid)-d-xylose and p-nitrophenyl α-d-glucopyranosyluronic acid as substrates. Mokuzai Gakkaishi40, 336–339 (1994).

    CAS  Google Scholar 

  • Kawai M.: Studies on milk-clotting enzymes produced by basidiomycetes. Part III. Partial purification and some properties of the enzyme produced by Irpex lacteus FR. Agric.Biol.Chem.35, 1517–1525 (1971).

    CAS  Google Scholar 

  • Kawai M., Terada O.: Studies on milk clotting enzymes produced by basidiomycetes. 4. Comparisons of some properties of crystalline acid proteinases produced by parent and mutant strains of Irpex lacteus FR. Agric.Biol.Chem.40, 1463–1469 (1976).

    CAS  Google Scholar 

  • Kim H.Y., Song H.G.: Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr.Microbiol.41, 317–320 (2000a).

    Article  CAS  PubMed  Google Scholar 

  • Kim H.Y., Song H.G.: Simultaneous utilization of two different pathways in degradation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. J.Microbiol.38, 250–254 (2000b).

    CAS  Google Scholar 

  • Kim H.Y., Song H.G.: Transformation of 2,4,6-trinitrotoluene by white-rot fungus Irpex lacteus. Biotechnol.Lett.22, 969–975 (2000c).

    Article  CAS  Google Scholar 

  • Kim H.Y., Song H.G.: Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus. Appl.Microbiol. Biotechnol.61, 150–156 (2003).

    CAS  PubMed  Google Scholar 

  • Kim T.-H., Lee Y., Yang J., Lee B., Park C., Kim S.: Decolorization of dye solutions by a membrane bioreactor (MBR) using whiterot fungi. Desalination168, 287–293 (2004).

    Article  CAS  Google Scholar 

  • Kiyohara H., Zhang Y.W., Yamada H.: Effect of exo-β-d-(1→3)-galactanase digestion on complement activating activivity of neutral arabinogalactan unit in a pectic arabinogalactan from roots of Angelica acutiloba KITAGAWA. Carbohydr.Polym.32, 249–253 (1997).

    Article  CAS  Google Scholar 

  • Ko K.S., Jung H.S.: Phylogenetic re-evaluation of Trametes consors based on mitochondrial small subunit ribosomal DNA sequences. FEMS Microbiol.Lett.170, 181–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H., Kim H.: Characterization of aspartic proteinase from basidiomycete, Laetiporus sulphureus. Food Sci.Technol.Res.9, 30–34 (2003).

    Article  CAS  Google Scholar 

  • Kobayashi H., Kusakabe I., Murakami K.: Purification and characterization of two milk-clotting enzymes from Irpex lacteus. Agric. Biol.Chem.47, 551–558 (1983).

    CAS  Google Scholar 

  • Kobayashi H., Kusakabe I., Murakami K.: Milk-clotting enzyme from Irpex lacteus as a calf rennet substitute for cheddar cheese manufacture. Agric.Biol.Chem.49, 1605–1609 (1985).

    CAS  Google Scholar 

  • Kobayashi H., Sekibata S., Shibuya H., Yoshida S., Kusakabe I., Murakami K.: Cloning and sequence-analysis of cDNA for Irpex lacteus aspartic proteinase. Agric.Biol.Chem.53, 1927–1933 (1989).

    CAS  Google Scholar 

  • Kobayashi H., Itagaki T., Inokuchi N., Ohgi K., Wada T., Iwama M., Irie M.: A new type of RNase T2 ribonuclease in two basidiomycetes fungi, Lentinus edodes and Irpex lacteus. Biosci.Biotechnol.Biochem.67, 2307–2310 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H., Kasamo K., Mizuno H., Kim H., Kusakabe I., Murakami K.: Crystallization and preliminary X-ray diffraction studies of aspartic proteinase from Irpex lacteus. J.Mol.Biol.226, 1291–1293 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Kotterman M.J.J., Heessels E., Dejong E., Field J.A.: The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain Bos55. Appl.Microbiol.Biotechnol.42, 179–186 (1994).

    Article  CAS  Google Scholar 

  • Kubo K., Nisizawa K.: Purification and properties of two endo-type cellulases from Irpex lacteus (Polyporus tulipiferae). J.Ferment. Technol.61, 383–389 (1983).

    CAS  Google Scholar 

  • Kum H., Kim M.K., Choi H.T.: Degradation of endocrine disrupting chemicals by genetic transformants in Irpex lacteus with an inducible laccase gene of Phlebia tremellosa. Biodegradation20, 673–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lamar R.T., Lestan D., Smith C.E., Dietrich D.M.: Fungal inoculum preparation. US Pat. 5786188 (1998).

  • Laugero C., Sigoillot J.-C., Moukha S., Frasse P., Bellon-fontaine M.-N., Bonnarme P., Mougin C., Asther M.: Selective hyperproduction of manganese peroxidases by Phanerochaete chrysosporium I-1512 immobilized on nylon net in a bubble column reactor. Appl.Microbiol.Biotechnol.44, 717–723 (1996).

    CAS  Google Scholar 

  • Laugero C., Mougin C., Sigoillot J-C., Moukha S., Asther M.: Comparison of static and agitated immobilized cultures of Phanerochaete chrysosporium for the degradation of pentachlorophenol and its metabolite pentachloroanisole. Can.J.Microbiol.43, 378–383 (1997).

    Article  CAS  Google Scholar 

  • Leonardi V., Cajthaml T., Petruccioli M., Šašek V.: The effects of surfactants on mycoremediation of aged PAH-contaminated soil, P197 in Proc. 3rd European Bioremediation Conference, Chania (Greece) 2005.

  • Leonardi V., Šašek V., Petruccioli M., D’Annibale A., Erbanová P., Cajthaml T.: Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Internat.Biodeter.Biodegrad.60, 165–170 (2007).

    Article  CAS  Google Scholar 

  • Leonardi V., Giubilei M.A., Federici E., Spaccapelo R., Šašek V., Novotný Č., Petruccioli M., D’Annibale A.: Mobilizing agents enhance fungal degradation of polycyclic aromatic hydrocarbons and affect diversity of indigenous bacteria in soil. Biotechnol.Bioeng.101, 273–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Leštan D., Lamar R.: Development of fungal inocula for bioaugmentation of contaminated soils. Appl.Environ.Microbiol.62, 2045–2052 (1996).

    PubMed  Google Scholar 

  • Lincoff G.H.: The Audubon Society Field Guide to North American Mushrooms, pp. 467–468. Alfred A. Knopf Publishing, New York 1981.

    Google Scholar 

  • Lobos S., Larrain J., Salas L., Cullen D., Vicuna R.: Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology140, 2691–2698 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Lu Y.P., Hardin I.: Analysis of sulfonated azo dyes degraded by white rot fungus Pleurotus ostreatus. AATCC (Amer.Assoc.Textile Chemists Colorists) Rev.6, 31–36 (2006).

    CAS  Google Scholar 

  • Lynch M.D.J., Thorn R.G.: Diversity of basidiomycetes in Michigan agricultural soils. Appl.Environ.Microbiol.72, 7050–7056 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Malachová K., Pavlíčková Z., Novotný Č., Svobodová K., Lednická D., Musílková E.: Reduction in the mutagenicity of synthetic dyes by successive treatment with activated sludge and the ligninolytic fungus, Irpex lacteus. Environ.Mol.Mutagen.47, 533–540 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Marco-urrea E., Gabarrell X., Caminal G., Vicent T., Adinarayana Reddy C.: Aerobic degradation by white-rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). J.Chem.Technol.Biotechnol.83, 1190–1196 (2008).

    Article  CAS  Google Scholar 

  • Martens R., Wetzstein H.G., Zadražil F., Capelari M., Hoffmann P., Schmeer N.: Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl.Environ.Microbiol.62, 4206–4209 (1996).

    CAS  PubMed  Google Scholar 

  • Matos A.J.F.S., Bezerra R.M.F., Dias A.: Screening of fungal isolates and properties of Ganoderma applanatum intended for olive mill wastewater decolorization and dephenolization. Lett.Appl.Microbiol.45, 270–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Máximo C., Costa-Ferreira M.: Decolorization of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Proc.Biochem.39, 1475–1479 (2004).

    Article  CAS  Google Scholar 

  • Morgavi D.P., Newbold C.J., Beever D.E., Wallace R.J.: Stability and stabilization of potential feed additive enzymes in rumen fluid. Enzyme Microb.Technol.26, 171–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Nisizawa K., Hashimoto Y.: Cellulose-splitting enzymes. 6. Difference in the specificities of cellulase and β-glucosidase from Irpex lacteus. Arch.Biochem.Biophys.81, 211–222 (1959).

    Article  CAS  PubMed  Google Scholar 

  • Norris D.M.: Isolation of Lignocellulose Transforming Microbes. Progress report no. 5, 15 Feb–14 Aug 80. Department of Entomology, University of Wisconsin, Madison (WI, USA) 1980.

    Google Scholar 

  • Novotný Č., Erbanová P., Cajthaml T., Rothschild N., Dosoretz C., Šašek V.: Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl.Microbiol.Biotechnol.54, 850–853 (2000).

    Article  PubMed  Google Scholar 

  • Novotný Č., Rawal B., Bhatt M., Patel M., Šašek V., Molitoris H.P.: Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. J.Biotechnol.89, 113–122 (2001).

    Article  PubMed  Google Scholar 

  • Novotný Č., Svobodová K., Erbanová P., Cajthaml T., Kasinath A., Lang E., Šašek V.: Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol.Biochem.36, 1545–1551 (2004a).

    Article  CAS  Google Scholar 

  • Novotný Č., Svobodová K., Kasinath A., Erbanová P.: Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Internat.Biodeter.Biodegr.54, 215–223 (2004b).

    Article  CAS  Google Scholar 

  • Novotný Č., Svobodová K., Sklenář J., Erbanová P., Kováčová N., Fuchs W., Schoeberl P., Tavčar M., Rehorek A., Pavko A.: Irpex lacteus: selection and application to bioremediation of contaminated water, pp. 239–243 in W. Meyer, C. Pearse (Eds): 8th Internat. Mycological Congress, Cairns (Australia). Medimond International Proceedings, Bologna (Italy) 2006.

  • Nzokou P., Wehner K., Kamdem D.P.: Natural durability of eight tropical hardwoods from Cameroon. J.Trop.Forest Sci.17, 416–427 (2005).

    Google Scholar 

  • Palma C., Martínez A.T., Lema J.M., Martínez M.J.: Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J.Biotechnol.77, 235–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Piovan L., Capelari M., Andrade L.H., Comasseto J.V., Porto A.L.M.: Biocatalytic reduction of a racemic selenocyclohexanone by Brazilian basidiomycetes. Tetrahedron-Asymmetry18, 1398–1402 (2007).

    Article  CAS  Google Scholar 

  • Pocedič J., Hasal P., Novotný Č.: Decolorization of organic dyes by Irpex lacteus in a laboratory trickle-bed biofilter using various mycelium supports. J.Chem.Technol.Biotechnol.84, 1031–1042 (2009).

    Article  CAS  Google Scholar 

  • Pointing S.B.: Feasibility of bioremediation by white-rot fungi. Appl.Microbiol.Biotechnol.57, 20–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Quintero J.C., Moreira M.T., Feijoo G., Lema J.M.: Screening of white-rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Cienc.Inv.Agr.35, 159–167 (2008).

    Article  Google Scholar 

  • Ricci L.C., Comasseto V., Andrade L.H., Capelari M., Cass Q.B., Porto A.L.M.: Biotransformations of aryl alkyl sulfides by whole cells of white-rot basidiomycetes. Enzyme Microb.Technol.36, 937–946 (2005).

    Article  CAS  Google Scholar 

  • Richter D.L., Warner J.I., Stephens A.L.: A comparison of mycorrhizal and saprotrophic fungus tolerance to creosote in vitro. Internat. Biodeter.Biodegr.51, 195–202 (2003).

    Article  CAS  Google Scholar 

  • Rigas F., Dritsa V.: Decolorization of a polymeric dye by selected fungal strains in liquid cultures. Enzyme Microb.Technol.39, 120–124 (2006).

    Article  CAS  Google Scholar 

  • Rodríguez Couto S.R., Moldes D., Sanromán A.: Optimum stability conditions of pH and temperature for ligninase and manganese- dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP. World J.Microbiol.Biotechnol.22, 607–612 (2006a).

    Article  CAS  Google Scholar 

  • Rodríguez Couto S.R., Rosales E., Sanromán M.A.: Decolorization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere62, 1558–1563 (2006b).

    Article  PubMed  CAS  Google Scholar 

  • Rothschild N., Hadar Y., Dosoretz C.G.: Ligninolytic system formation by Phanerochaete chrysosporium in air. Appl.Environ. Microbiol.61, 1833–1838 (1995).

    CAS  PubMed  Google Scholar 

  • Rothschild N., Novotný Č., Šašek V., Dosoretz C.G.: Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase. Enzyme Microb.Technol.31, 627–633 (2002).

    Article  CAS  Google Scholar 

  • de la Rubidia T., Linares A., Peres J., Munoz-Dorado J., Romea J., Martinez J.: Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Res.Microbiol.153, 547–554 (2002).

    Article  Google Scholar 

  • Ruttimann-Johnson C., Lamar R.T.: Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi. Soil Biol.Biochem.29, 1143–1148 (1997).

    Article  Google Scholar 

  • Ryvarden L., Gilbertson R.L.: European Polypores, Part 1. Abortiporus — Lindtneria, Synopsis fungorum 6, Fungiflora, Oslo (Norway), pp. 36–37 and 351–353. Grønland Grafiske A/S, Oslo (Norway) 1993.

    Google Scholar 

  • Sabotic J., Trcek T., Popovic T., Brzin J.: Basidiomycetes harbor a hidden treasure of proteolytic diversity. J.Biotechnol.128, 297–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sakurai M.H., Kiyohara H., Matsumoto T., Tsumuraya Y., Hashimoto Y., Yamada H.: Characterization of antigenic epitopes in anti-ulcer pectic polysaccharides from Bupleurum falcatum L. using several carbohydrases. Carbohydr.Res.311, 219–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Šašek V., Novotný Č., Vampola P.: Screening for efficient organopollutant fungal degraders by decolorization. Czech Mycol.50, 303–311 (1998).

    Google Scholar 

  • Šašek V., Vitásek J., Chromcová D., Prokopová I., Brožek J., Náhlík J.: Biodegradation of synthetic polymers by composting and fungal treatment. Folia Microbiol.51, 425–430 (2006).

    Article  Google Scholar 

  • Shin K.S.: The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent. J.Microbiol.42, 37–41 (2004).

    CAS  PubMed  Google Scholar 

  • Shin K.S., Oh I.K., Kim C.J.: Production and purification of Remazol Brilliant Blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl.Environ.Microbiol.63, 1744–1748 (1997).

    CAS  PubMed  Google Scholar 

  • Shin K.S., Kim Y.H., Lim J.S.: Purification and characterization of manganese peroxidase of the white-rot fungus Irpex lacteus. J.Microbiol.43, 503–509 (2005).

    CAS  PubMed  Google Scholar 

  • Shin E.H., Choi H.T., Song H.G.: Biodegradation of endocrine-disrupting bisphenol a by white rot fungus Irpex lacteus. J.Microbiol. Biotechnol.17, 1147–1151 (2007).

    CAS  PubMed  Google Scholar 

  • Shiroishi M., Amano Y., Hoshino E., Nisizawa K., Kanda T.: Hydrolysis of various celluloses, (1→3),(1→4)-β-d-glucans, and xyloglucan by three endo-type cellulases. Mokuzai Gakkaishi43, 178–187 (1997).

    CAS  Google Scholar 

  • Singh H.: Mycoremediation: Fungal Bioremediation. Wiley-Interscience-John Wiley and Sons, Inc., Hoboken (NJ, USA) 2006.

    Google Scholar 

  • Šnajdr J., Baldrian P.: Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol.52, 498–502 (2007).

    Article  Google Scholar 

  • Song H.G.: Biodegradation of aromatic hydrocarbons by several white-rot fungi. J.Microbiol.35, 66–71 (1997).

    CAS  Google Scholar 

  • Sotnikova I.V., Zhukov V.G.: Characteristics of obtaining protoplasts from two strains of Tolypocladium inflatum subsp. Blastosporum. Antibiot.-Khimioter.37, 6–11 (1992).

    CAS  Google Scholar 

  • Šušla M., Svobodová K.: Effect of various synthetic dyes on the production of manganese-dependent peroxidase isoenzymes by immobilized Irpex lacteus. World J.Microbiol.Biotechnol.24, 225–230 (2008).

    Article  CAS  Google Scholar 

  • Šušla M., Novotný Č., Erbanová P., Svobodová K.: Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase. Folia Microbiol.53, 479–485 (2008).

    Article  Google Scholar 

  • Svobodová K., Erbanová P., Sklenář J., Novotný Č.: The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus. Folia Microbiol.51, 573–578 (2006).

    Article  Google Scholar 

  • Svobodová K., Senholdt M., Novotný Č., Rehorek A.: Mechanism of Reactive Orange 16 degradation with the white rot fungus Irpex lacteus. Proc.Biochem.42, 1279–1284 (2007).

    Article  CAS  Google Scholar 

  • Svobodová K., Majcherczyk A., Novotný Č., Kues U.: Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Biores.Technol.99, 463–471 (2008).

    Article  CAS  Google Scholar 

  • Takagaki K., Iwafune M., Kakizaki I., Ishido K., Kato Y., Endo M.: Cleavage of the xylosyl serine linkage between a core peptide and a glycosaminoglycan chain by cellulases. J.Biol.Chem.277, 18397–18403 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H., Hirano T., Enoki A.: Extracellular substance from the white-rot basidiomycete Irpex lacteus for production and reduction of H2O2 during wood degradation. Mokuzai Gakkaishi39, 493–499 (1993).

    CAS  Google Scholar 

  • Tanaka H., Itakura S., Enoki A.: Hydroxyl radical generation and phenol oxidase activity in wood degradation by the white-rot basidiomycete Irpex lacteus. Mater.Organismen33, 91–105 (1999).

    CAS  Google Scholar 

  • Tavčar M., Svobodová K., Kuplenk J., Novotný Č., Pavko A.: Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim.Sloven.53, 338–343 (2006).

    Google Scholar 

  • Toda H., Takada S., Oda M., Amano Y., Kanda T., Okazaki M., Shimosaka M.: Gene cloning of an endoglucanase from the basidiomycete Irpex lacteus and its cDNA expression in Saccharomyces cerevisiae. Biosci.Biotechnol.Biochem.69, 1262–1269 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tsumuraya Y., Mochizuki N., Hashimoto Y., Kovac P.: Purification of an exo-β-(1→3)-d-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J.Biol.Chem.265, 7207–7215 (1990).

    CAS  PubMed  Google Scholar 

  • Valentin L., Feijoo G., Moreira M.T., Lema J.M.: Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Internat.Biodeter.Biodegr.58, 15–21 (2006).

    Article  CAS  Google Scholar 

  • Wang H.X., Ng T.B.: Isolation of a new ribonuclease from fruiting bodies of the silver plate mushroom Clitocybe maxima. Peptides25, 935–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wang H.X., Ng T.B.: A ribonuclease from the wild mushroom Boletus griseus. Appl.Microbiol.Biotechnol.72, 912–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H., Fauzi H., Iwama M., Onda T., Ohgi K., Irie M.: Base-nonspecific acid ribonuclease from Irpex lacteus, primary structure and phylogenetic-relationships in RNAse T-2 family enzyme. Biosci.Biotechnol.Biochem.59, 2097–2103 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Winquist E., Moilanen U., Mettala A., Leisola M., Hatakka A.: Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem.Eng.J.42, 128–132 (2008).

    Article  CAS  Google Scholar 

  • Yang D.Q., Wan H., Wang X.M., Liu Z.M.: Use of fungal metabolites to protect wood-based panels against mould infection. Bio-Control52, 427–436 (2007).

    Google Scholar 

  • Yang D.Q., Wang X.M., Shen J., Wan H.: A rapid method for evaluating antifungal properties of various barks. Forest Prod.J.54, 37–39 (2004).

    Google Scholar 

  • Yang F.-C., Yu J.-T.: Development of a bioreactor system using an immobilized white rot fungus for decolorization. Bioprocess Eng.16, 9–11 (1996).

    Article  CAS  Google Scholar 

  • Ye X.Y., Ng T.B.: A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius. Biochem.Biophys. Res.Commun.293, 857–861 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Č. Novotný.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotný, Č., Cajthaml, T., Svobodová, K. et al. Irpex lacteus, a white-rot fungus with biotechnological potential — review. Folia Microbiol 54, 375–390 (2009). https://doi.org/10.1007/s12223-009-0053-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0053-2

Keywords

Navigation