Skip to main content
Log in

Homotopy Perturbation Method for the Attachment Oscillator Arising in Nanotechnology

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Bubble electrospinning is an effective method to produce nanofibers with different morphologies. Numerous polymer film fragments are formed from bursting bubbles, which elongate to nanofibers under high electrostatic voltage. In two polymers, bubble electrospinning film fragments of both polymers could interact due to the dominant surface-induced force named geometrical potential. Mathematical models are established to elaborate on the non-linear oscillators with singular terms. Parameter expansion technology used in the homotopy perturbation method can be useful for such kind of non-linear oscillators. In this paper, this technique is implemented to find the amplitude-frequency relationship of the attachment oscillator used in the molecular electrospinning process to produce nanofibers. The results depict the effectiveness of the method and show that the frequency obtained for duffing oscillator is highly accurate in exceptional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ahmad, Nonlinear Sci. Lett. A, 9, 27 (2018).

    CAS  Google Scholar 

  2. H. Ahmad, Nonlinear Sci. Lett A, 9, 62 (2018).

    Google Scholar 

  3. D.-H. Shou and J.-H. He, Int. J. Nonlinear Sci. Numer. Simul., 8, 121 (2007).

    Article  Google Scholar 

  4. J.-H. He, Int. J. Nonlinear Sci. Numer. Simul., 9, 207 (2008).

    Google Scholar 

  5. J.-H. He, Chaos, Solitons & Fractals, 34, 1430 (2007).

    Article  Google Scholar 

  6. J.-H. He, Phys. Lett. A, 374, 2312 (2010).

    Article  CAS  Google Scholar 

  7. J.-H. He, Mech. Res. Commun., 29, 107 (2002).

    Article  Google Scholar 

  8. J.-H. He, J. Low Freq. Noise, Vib. Act. Control, 38, 1252 (2019).

    Article  Google Scholar 

  9. Z. Ren and G. Hu, J. Low Freq. Noise, Vib. Act. Control, 38, 1050 (2019).

    Article  Google Scholar 

  10. D. Tian and Z. Liu, J. Low Freq. Noise Vib. Act. Control, 38, 1629 (2019).

    Article  Google Scholar 

  11. Z. Yang, F. Dou, T. Yu, M. Song, H. Shi, X. Yao, and L. Xu, Results Phys., 14, 102347 (2019).

    Article  Google Scholar 

  12. X.-X. Li and J.-H. He, Results Phys., 12, 1405 (2019).

    Article  Google Scholar 

  13. H. Kong, J. He, R. Chen, and L. Wang, J. Nano Res., 22, 71 (2013).

    Article  Google Scholar 

  14. C. J. Zhou, D. Tian, and J. H. He, Therm. Sci., 22, 1737 (2018).

    Article  Google Scholar 

  15. N. Peng and J. He, Recent Pat. Nanotechnol., 14, 64 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. J. Fan, Y. Zhang, Y. Liu, Y. Wang, F. Cao, and Q. Yang, Results Phys., 15, 102537 (2019).

    Article  Google Scholar 

  17. P. Liu and J. H. He, Therm. Sci., 22, 33 (2018).

    Article  Google Scholar 

  18. R. Chen, Y. Wan, W. Wu, C. Yang, J. H. He, J. Cheng, R. Jetter, F. K. Ko, and Y. Chen, Mater. Des., 162, 246 (2019).

    Article  CAS  Google Scholar 

  19. X. Li, Y. Li, Y. Li, and J. He, Results Phys., 16, 102899 (2020).

    Article  Google Scholar 

  20. D. Tian, X. X. Li, and J. H. He, Adsorpt. Sci. Technol., 37, 367 (2019).

    Article  CAS  Google Scholar 

  21. P. Liu and J. H. He, Therm. Sci., 22, 33 (2018).

    Article  Google Scholar 

  22. D. Garcia-Sanchez, K. Y. Fong, H. Bhaskaran, S. Lamoreaux, and H. X. Tang, Phys. Rev. Lett., 109, 27202 (2012).

    Article  Google Scholar 

  23. A. W. Rodriguez, F. Capasso, and S. G. Johnson, Nat. Photonics, 5, 211 (2011).

    Article  CAS  Google Scholar 

  24. D. Zhabinskaya, J. M. Kinder, and E. J. Mele, Phys. Rev. A, 78, 60103 (2008).

    Article  Google Scholar 

  25. W.-M. Zhang, H. Yan, Z.-K. Peng, and G. Meng, Sensors Actuators A Phys., 214, 187 (2014).

    Article  CAS  Google Scholar 

  26. X. Zhu and W. Xu, J. Mech. Phys. Solids, 111, 170 (2018).

    Article  Google Scholar 

  27. W. W. Wood and F. R. Parker, J. Chem. Phys., 27, 720 (1957).

    Article  CAS  Google Scholar 

  28. J.-H. He, Micro Nanosyst., 12, 2 (2020).

    Article  Google Scholar 

  29. Z. Yang, X. Liu, and Y. Tian, Colloids Surfaces A Physicochem. Eng. Asp., 560, 205 (2019).

    Article  CAS  Google Scholar 

  30. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature, 438, 44 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Q. T. Ain and J.-H. He, Therm. Sci., 23, 1707 (2019).

    Article  Google Scholar 

  32. J.-H. He, Recent Pat. Nanotechnol., 13, 3 (2019).

    Google Scholar 

  33. J.-H. He and C. Sun, J. Math. Chem., 57, 2075 (2019).

    Article  CAS  Google Scholar 

  34. T. Hayat, M. I. Khan, M. Waqas, and A. Alsaedi, Colloids Surfaces A Physicochem. Eng. Asp., 518, 263 (2017).

    Article  CAS  Google Scholar 

  35. M. Ali, Q. Tul, and J. Huanhe, Acta Chem. Malaysia, 4, 40 (2020).

    Article  Google Scholar 

  36. V. K. Verma and R. D. S. Yadava, Sensors Actuators B Chem., 235, 583 (2016).

    Article  CAS  Google Scholar 

  37. H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, Science, 283, 1900 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, S. Lara-Avila, and K. Moth-Poulsen, Chem. Soc. Rev., 43, 7378 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. J.-H. He, Indian J. Phys., 88, 193 (2014).

    Article  CAS  Google Scholar 

  40. J.-H. He, Int. J. Mod. Phys. B, 20, 2561 (2006).

    Article  Google Scholar 

  41. J.-H. He, Int. J. Mod. Phys. B, 20, 1141 (2006).

    Article  Google Scholar 

  42. Y. Wu and J.-H. He, Results Phys., 10, 270 (2018).

    Article  Google Scholar 

  43. J.-H. He, Abstr. Appl. Anal., 2012, 7 (2012).

    Google Scholar 

  44. J.-H. He, Ain Shams Eng. J., 11, 1411 (2020).

    Article  Google Scholar 

  45. J.-H. He, Int. J. Numer. Methods Heat Fluid Flow, 30, 4933 (2020).

    Article  Google Scholar 

  46. J.-H. He and Q.-T. Ain, Therm. Sci., 24, 659 (2020).

    Article  Google Scholar 

  47. F.-Y. Ji, C.-H. He, J.-J. Zhang, and J.-H. He, Appl. Math. Model., 82, 437 (2020).

    Article  Google Scholar 

  48. J.-H. He and H. Latifizadeh, Int. J. Numer. Methods Heat Fluid Flow, 30, 4797 (2020).

    Article  Google Scholar 

  49. J.-H. He, Int. J. Appl. Comput. Math., 3, 1557 (2017).

    Article  Google Scholar 

  50. C. H. He, J. H. He, and H. M. Sedighi, Math. Methods Appl. Sci., doi:https://doi.org/10.1002/mma.6384 (2020).

  51. J.-H. He, Results Phys., 17, 103031 (2020).

    Article  Google Scholar 

  52. J. He and X. Jin, Math. Methods Appl. Sci., doi:https://doi.org/10.1002/mma.6321 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Huan He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Anjum, N., Ain, Q.T. et al. Homotopy Perturbation Method for the Attachment Oscillator Arising in Nanotechnology. Fibers Polym 22, 1601–1606 (2021). https://doi.org/10.1007/s12221-021-0844-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0844-x

Keywords

Navigation