Skip to main content
Log in

Physicochemical Properties of TPP-Crosslinked Chitosan Nanoparticles as Potential Antibacterial Agents

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Chitosan (CS) nanoparticles with antibacterial properties have been synthesized by the ionic gelation method using tripolyphosphate (TPP) as a crosslinking agent. Physicochemical properties of the resulting CS-TPP nanoparticles were examined by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, transmission electron microscopy, and UV-Vis spectroscopy. The antibacterial efficacy of the nanoparticles against S. aureus and E. coli was evaluated by the disc diffusion (DD) method. It was found that the optimum conditions for fabricating the CS-TPP nanoparticles were: pH of 2.85, CS concentration of 1.5 mg/ml, TPP concentration of 0.5 mg/ml, CS:TPP feed ratio of 1:1, mixing speed of 300 rpm, and reaction temperature of 30 ºC. The CS-TPP nanoparticles decreased in average particle size with an increase in the CS concentration. Based on the DLS results, the average size of CS-TPP ranged from 79.2 to 114.2 nm, with a polydispersity index of 0.369-0.398. However, slightly larger sizes were observed (150 to 180 nm), based on the TEM and SEM images. The CS-TPP has more regular structures compared to CS, indicated by the increase of crystallinity based on X-ray diffraction patterns. In addition, FTIR spectra confirmed that interactions in tripolyphosphate were predominantly between CS amines and TPP counterions via ionic interactions, as supported by SEM-EDX. CS-TPP exhibited antibacterial activity. The highest inhibition zone radius was 5.0 and 5.5 mm against E. coli and S. aureus, respectively. The bio-based materials have a high potential for use as value-added antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Wati, IOP Conf. Ser.: Earth Environ. Sci., 137, 012101 (2016).

    Article  Google Scholar 

  2. A. R. Shirvan, N. H. Nejad, and A. Bashari, Fiber. Polym., 15, 1908 (2014).

    Article  CAS  Google Scholar 

  3. O. Cotta-Arriola, M. O. Cortez-Rocha, J. M. Ezquerra-Brauer, J. Lizardi-Mendoza, A. Burgos-Hernández, R. M. Robles-Sánchez, and M. Plascencia-Jatomea, J. Polym. Environ., 21, 971 (2013).

    Article  Google Scholar 

  4. K. Divya, S. Vijayan, T. K. George, and M. S. Jisha, Fiber. Polym., 18, 221 (2017).

    Article  CAS  Google Scholar 

  5. S. S. Saha, M. Zubair, M. A. Khosa, S. Song, and A. Ullah, J. Polym. Environ., 27, 1389 (2019).

    Article  CAS  Google Scholar 

  6. N. A. Al-Tayyar, A. M. Youssef, and R. R. Al-Hindi, Food Packag. Shelf Life, 25, 100523 (2020).

    Article  Google Scholar 

  7. G. Sahan, A. Demir, and Y. Gocke, Fiber. Polym., 17, 1007 (2016).

    Article  CAS  Google Scholar 

  8. D. J. Sullivan, M. Cruz-Romero, T. Collins, E. Cummins, J. P. Kerry, and M. A. Morris, Food Hydrocolloids, 83, 355 (2018).

    Article  CAS  Google Scholar 

  9. K. Paul, W. Simon, and M. James, J. Appl. Chem., 11, 25 (2018).

    Google Scholar 

  10. S. Zahedi, J. Safaei-Ghomi, and H. Shahbazi-Alavi, Ultrason. Sonochem., 40, 260 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. Z. Moslem, M. Sadri, and A. B. Pebdeni, Fiber. Polym., 17, 1336 (2016).

    Article  CAS  Google Scholar 

  12. R. Anitha and L. Shantha, Carbohydr. Polym., 81, 243 (2010).

    Article  Google Scholar 

  13. R. Kalaivani, M. Maruthupandy, T. Muneeswaran, A. H. Beevi, M. Anand, C. M. Ramakritinan, and A. K. Kumaraguru, Front. Lab. Med., 2, 30 (2018).

    Article  Google Scholar 

  14. O. M. Sharaf, M. S. Al-Gamal, G. A. Ibrahim, N. M. Dabiza, S. S. Salem, M. F. El-Ssayad, and A. M. Youssef, Carbohydr. Polym., 223, 115094 (2019).

    Article  PubMed  CAS  Google Scholar 

  15. F. Khoerunnisa, W. Rahmah, B. S. Ooi, E. Dwihermiati, N. Nashrah, S. Fatimah, Y. G. Ko, and N. E. Poh, J. Environ. Chem. Eng., 8, 103686 (2020).

    Article  CAS  Google Scholar 

  16. I. Aranaz, I. Panos, C. Peniche, A. Heras, and N. Acosta, Molecules, 22, 1 (2017).

    Article  Google Scholar 

  17. M. Kong, X. G. Chen, K. Xing, and H. J. Park, Int. J. Food Microbiol., 144, 51 (2010).

    Article  PubMed  CAS  Google Scholar 

  18. W. Fan, W. Yan, Z. Xu, and H. Ni, Colloids Surf. B, Biointerfaces, 90, 21 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. Z. Ma, A. Garrido-Maestu, and K. C. Jeong, Carbohydr. Polym., 176, 257 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. P. Mazancová, V. Némethová, D. Trel’ová, L. Kleščíková, I. Lacík, and F. Rázga, Carbohydr. Polym., 192, 104 (2018).

    Article  PubMed  Google Scholar 

  21. R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, ACS Nano., 8, 12450 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. H. Jonassen, A. L. Kjøniksen, and M. Hiorth, Biomacro., 13, 3747 (2012).

    Article  CAS  Google Scholar 

  23. L. Y. Ing, N. M. Zin, A. Sarwar, and H. Katas, Int. J. Biomater., 2012, 632698 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. D. MubarakAli, F. LewisOscar, V. Gopinath, N. S. Alharbi, S. A. Alharbi, and N. Thajuddin, Microb. Pathog., 114, 323 (2018).

    Article  PubMed  CAS  Google Scholar 

  25. S. Kunjachan, S. Jose, and T. Lammers, Asian J. Pharm., 4, 148 (2010).

    Article  CAS  Google Scholar 

  26. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, Nano Lett., 11, 4029 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. M. E. Abd El-Aziz, S. M. M. Morsi, D. M. Salama, M. S. Abdel-Aziz, M. S. Abd Elwahed, E. A. Shaaban, and A. M. Youssef, Int. J. Biol. Macromol., 123, 856 (2019).

    Article  PubMed  CAS  Google Scholar 

  28. M. Diop, N. Auberval, A. Viciglio, A. Langlois, W. Bietiger, C. Mura, C. Peronet, A. Bekel, D. J. David, M. Zhao, M. Pinget, N. Jeandidier, C. Vauthier, E. Marchioni, Y. Frere, and S. Sigrist, Int. J. Pharm., 491, 402 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. X. Du, Y. Li, Y. Xia, S.-M. Ai, J. Liang, P. Sang, X.-L. Ji, and S.-Q. Liu, Int. J. Mol. Sci., 17, 144 (2016).

    Article  PubMed Central  Google Scholar 

  30. A. Kumari, S. K. Yadav, and S. C. Yadav, Colloids Surf. B Biointerfaces, 75, 1 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. B. Wilson, M. K. Samanta, K. Santhi, K. P. S. Kumar, M. Ramasamy, and B. Suresh, Nanomed. Nanotechnol. Biol. Med., 6, 144 (2010).

    Article  CAS  Google Scholar 

  32. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Control. Release, 100, 5 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. M. L. Tsai, S. W. Bai, and R. H. Chen, Carbohydr. Polym., 71, 448 (2008).

    Article  CAS  Google Scholar 

  34. H.-C. Yang and M.-H. Hon, Polym. Plast. Technol. Eng., 49, 1292 (2010).

    Article  CAS  Google Scholar 

  35. Y. Huang and Y. Lapitsky, Langmuir, 27, 10392 (2011).

    Article  PubMed  CAS  Google Scholar 

  36. J. Antoniou, F. Liu, H. Majeed, J. Qi, W. Yokoyama, and F. Zhong, Colloids Surf. A Physicochem. Eng. Asp., 465, 137 (2015).

    Article  CAS  Google Scholar 

  37. G. Erel, M. Kotmakci, H. Akbaba, S. S. Karadağlı, and A. G. Kantarci, J. Drug Deliv. Sci. Tech., 36, 161 (2016).

    Article  CAS  Google Scholar 

  38. D. R. Bhumkar and V. B. Pokharkar, AAPS PharmSciTech, 7, E138 (2006).

    Article  PubMed Central  Google Scholar 

  39. B.-S. Kang, S.-E. Lee, C. L. Ng, C.-W. Cho, and J. S. Park, J. Pharm. Investig., 45, 265 (2015).

    Article  CAS  Google Scholar 

  40. B.-S. Kang, S.-E. Lee, C. L. Ng, J. K. Kim, and J. S. Park, Materials, 8, 486 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. M. Karimi, P. Avci, R. Mobasseri, M. Hamblin, and H. Naderi-Manesh, J. Nanopart. Res., 15, 1651 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. H. Jonassen, A. L. Kjoniksen, and M. Hiorth, Colloid Polym. Sci., 290, 919 (2012b).

    Article  CAS  Google Scholar 

  43. S. Hassani, A. Laouini, H. Fessi, and C. Charcosset, Colloids Surf. A Physicochem. Eng. Asp., 482, 34 (2015).

    Article  CAS  Google Scholar 

  44. Y. H. Cai and Y. Lapitsky, Colloids and Surfaces B, Biointerfaces, 115, 100 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. H. Jonassen, A. L. Kjoniksen, and M. Hiorth, Biomacromolecules, 13, 3747 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Y. Huang, Y. H. Cai, and Y. Lapitsky, J. Mater. Chem. B, 3, 5957 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. E. L. Mogilevskaya, T. A. Akopova, A. N. Zelenetskii, and A. N. Ozerin, Polym. Sci. Ser. A, 48, 116 (2006).

    Article  Google Scholar 

  48. M. Banach, Z. Kowalski, Z. Wzorek, and K. Gorazda, Polish J. Chem. Tech., 20, 14 (2009).

    Google Scholar 

  49. J. Li and Q. Huang, Carbohydr. Polym., 87, 1670 (2012).

    Article  CAS  Google Scholar 

  50. J. Berger, M. Reist, J. M. Mayer, O. Felt, N. Peppas, and R. Gurny, Eur. J. Pharm. Biopharm., 57, 19 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. A. S. Vaziri, I. Alemzadeh, and M. Vossoughi, LWT-Food Sci. Tech., 97, 440 (2018).

    Article  CAS  Google Scholar 

  52. J. S. Negi, P. Chattopadhyay, A. K. Sharma, E. N. Koukaras, S. A. Papadimitriou, D. N. Bikiaris, and G. E. Froudakis, Mol. Pharm., 9, 2856 (2012).

    Article  Google Scholar 

  53. V. Kamat, D. Bodas, and K. Paknikar, Sci. Rep., 6, 22260 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. M. Kong, X. G. Chen, K. Xing, and H. J. Park, Int. J. Food Microbiol., 144, 51 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. T. Phaechamud, AAPS PharmSciTech, 9, 668 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. H. Bangun, S. Tandiono, and A. Arianto, J. Appl. Pharm. Sci., 8, 147 (2018).

    CAS  Google Scholar 

  57. J. H. Lee, J. H. Moon, J. I. Ryu, S. W. Kang, K. H. Kwack, and J. Y. Lee, J. Vet. Sci., 20, e33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by World Class Professor (WCP) Program Scheme B (101.11/E4.3/KU/2020) by the Ministry of Education and Culture of Republic Indonesia, and PUPT and competitive research grants (171A/UN.40D/PP/2019) by the Ministry of Research, Technology and Higher Education of the Republic Indonesia. Support from the Center of Excellence in Materials and Plasma Technology (CoE M@P Tech), Thammasat University to P.O. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fitri Khoerunnisa or Pakorn Opaprakasit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoerunnisa, F., Nurhayati, M., Dara, F. et al. Physicochemical Properties of TPP-Crosslinked Chitosan Nanoparticles as Potential Antibacterial Agents. Fibers Polym 22, 2954–2964 (2021). https://doi.org/10.1007/s12221-021-0397-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0397-z

Keywords

Navigation