Skip to main content
Log in

Electrospun Polyamide-6 Nanofiber Hybrid Membranes for Wastewater Treatment

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrospun nanofiber hybrid membranes have superior membrane performance due to their high specific surface area, narrow pore size, high porosity, and uniform pore size. Recently, increasing attention has been given to hydrophilic membranes such as polyamide 6 (PA6) in applications microfiltration and reverse osmosis. Electrospun PA6 nanofiber hybrid membranes have not found any real application due to their poor mechanical strength under high pressure. In this study, PA6 nanofiber layer was prepared using wire electrospinning method. Three supporting material with different adhesion method has been used to improve the mechanical properties of the membranes. Membranes were characterized with Scanning Electron Microscope images, pore size, and contact angle measurements. Tensile strength and the delamination tests were run to measure the mechanical properties of the membranes. Three types of wastewater were carried out during filtration; using real wastewater supplied from a company which consists of pitch and tar oils, engine oil/water mixture and kitchen oil/water mixture. Results indicated that the adhesion method and the supporting layer played a big role in the permeability of the membranes. The PA6 nanofiber hybrid membranes exhibited high water fluxes in even at low pressures which indicate that electrospun nanofiber membranes might be highly promising for microfiltration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Chong, E. Mahmoudi, Y. T. Chung, M. M. BaAbbad, C. H. Koo, and A. W. Mohammad, Desalin. Water Treat., 96, 12 (2017).

    Article  CAS  Google Scholar 

  2. L. Yan, Y. S. Li, and C. B. Xiang, Polymer (Guildf), 46, 7701 (2005).

    Article  CAS  Google Scholar 

  3. A. Bottino, G. Capannelli, V. D’Asti, and P. Piaggio, Sep. Purif. Technol., 22-23, 269 (2001).

    Article  Google Scholar 

  4. W. Chen, Y. Su, L. Zhang, Q. Shi, J. Peng, and Z. J. Jiang, Memb. Sci., 348, 75 (2010).

    Article  CAS  Google Scholar 

  5. K. Ebert, D. Fritsch, J. Koll, and C. J. Tjahjawiguna, Memb. Sci., 233, 71 (2004).

    Article  CAS  Google Scholar 

  6. G. Arthanareeswaran, T. Sriyamunadevi, and M. Raajenthiren, Sep. Purif. Technol., 64, 38 (2008).

    Article  CAS  Google Scholar 

  7. , S. Kuypers, and R. Leysen, J. Membr. Sci., 113, 343 (1996).

    Article  Google Scholar 

  8. Y. Ko, Y. Choi, Y. Jang, J. Choi, and S. Lee, Desalin. Water Treat., 97, 87 (2017).

    Article  CAS  Google Scholar 

  9. M. J. A. A.Shirazi, S. Bazgir, M. M. A. A.Shirazi, and S. Ramakrishna, Desalin. Water Treat., 51, 5974 (2013).

    Article  CAS  Google Scholar 

  10. D. Bjorge, N. Daels, S. De Vrieze, P. Dejans, T. Van Camp, W. Audenaert, J. Hogie, P. Westbroek, K. De Clerck, and S. W. H. Van Hulle, Desalination, 249, 942 (2009).

    CAS  Google Scholar 

  11. F. Yalcinkaya and J. Hruza, J. Nanomaterials, 8, 272 (2018).

    Article  CAS  Google Scholar 

  12. B. Yalcinkaya, F. Yalcinkaya, and J. Chaloupek, J. Nanomater., Article No. 2694373, 2016 (2016).

    Google Scholar 

  13. F. Yalcinkaya, Arab.J. Chem., doi:10.1016/j.arabjc.2016.12.012 (2016).

    Google Scholar 

  14. B. Yalcinkaya, F. Yalcinkaya, and J. Chaloupek, Desalin. Water Treat., 59, 19 (2017).

    Article  CAS  Google Scholar 

  15. M. Aiba, K. Ito, T. Tokuyama, H. Tomioka, T. Higashihara, M. Ueda, and H. Matsumoto, Macromol. Chem. Phys., 219, 1 (2018).

    Google Scholar 

  16. S. Konagaya and M. Tokai, J. Appl. Polym. Sci., 76, 913 (2000).

    Article  CAS  Google Scholar 

  17. J. Meier-Haack, M. Valko, K. Lunkwitz, and M. Bleha, Desalination, 163, 215 (2004).

    Article  CAS  Google Scholar 

  18. S. Wu, J. Adhes., 5, 39 (1973).

    Article  CAS  Google Scholar 

  19. A. Ahagon and A. N. Gent, J. Polym. Sci. Polym. Phys. Ed., 7, 1285 (1975).

    Article  Google Scholar 

  20. E. Helfand and Y. J. Tagami, Chem. Phys., 56, 3592 (1971).

    Google Scholar 

  21. B. V. Derjaguin, N. A. Krotova, V. V. Karassev, Y. M. Kirillova, and I. N. Aleinikova, Prog. Surf. Sci., 45, 95 (1994).

    Article  Google Scholar 

  22. H. W. Kammer, Acta Polym., 34, 112 (1983).

    Article  CAS  Google Scholar 

  23. A. Kinloch, “Adhesion and Adhesives: Science and Technology”, p.18, Springer Netherlands: Dordrecht, 1987.

    Book  Google Scholar 

  24. Y. Zhu, D. Wang, L. Jiang, and J. Jin, NPG Asia Mater., Article No. e101, 6 (2014).

    Google Scholar 

  25. K.-H. Choo and C.-H. Lee, J. Colloid Interface Sci., 226, 367 (2000).

    Article  CAS  Google Scholar 

  26. F. Y. Guo, P. C. Sun, and J. F. Wei, Environ. Technol. (United Kingdom), 39, 3159 (2018).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Yalcinkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalcinkaya, F., Yalcinkaya, B. & Hruza, J. Electrospun Polyamide-6 Nanofiber Hybrid Membranes for Wastewater Treatment. Fibers Polym 20, 93–99 (2019). https://doi.org/10.1007/s12221-019-8820-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8820-4

Keywords

Navigation