Skip to main content
Log in

The Effect of Melanocyte Stimulating Hormone and Hydroxyapatite on Osteogenesis in Pulp Stem Cells of Human Teeth Transferred into Polyester Scaffolds

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Presently, tissue engineering is employed in the restoration and repair of tissue defects. Degradable scaffolds, stem cells and stimulating factors are employed in this method. In this study, the effect of melanocyte-stimulating hormone (MSH) and/or hydroxyapatite (HA) on proliferation, osteoblast differentiation, and mineralization of human dental pulp stem cells (hDPSCs) seeded on PLLA-PCL nanofibrous scaffolds was evaluated. For this aim, PLLA-PCL-HA nanofibrous scaffolds were fabricated using electrospinning method. FE-SEM images exhibited that all nanofibers had bead-free morphologies with average diameters ranging from 150–205 nm. Human DPSCs seeded into PLLA-PCL nanofibers were treated with MSH. Cell viability, proliferation, morphology, osteogenic potential, and the expression of tissue-specific genes were assessed by means of MTT assay, FE-SEM, alizarin red S staining, and RT-PCR analysis. hDPSCs exhibited improved adhesion and proliferation capacity on the PLLA-PCL-HA nanofibers treated with MSH compared to other groups (p<0.05). Additionally, PLLA-PCL-HA nanofibers treated with MSH exhibited significantly higher mineralization and alkaline phosphatase activity than other groups. RT-PCR results confirmed that PLLA-PCL-HA nanofibers enriched with MSH could significantly unregulated the gene expression of BMP2, osteocalcin, RUNX2 and DSPP that correlated to osteogenic differentiation (p<0.05). Based on results, incorporation of HA nanoparticles in PLLA-PCL nanofibers and addition of MSH in media exhibited synergistic effects on the adhesion, proliferation, and osteogenesis differentiation of hDPSCs, and therefore assumed to be a favorable scaffold for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. Gurtner, M. J. Callaghan, and M. T. Longaker, Annu. Rev. Med., 58, 299 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. L. Casagrande, M. M. Cordeiro, S. A. Nör, and J. E. Nör, Odontology, 99, 1 (2011).

    Article  PubMed  Google Scholar 

  3. M. Stadtfeld and K. Hochedlinger, Genes Dev., 24, 2239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Guo, Y. Xie, J.–B. Fan, F. Ji, S. Wang, and H. Fei, Biochem. Biophys. Res. Commun., 469, 281 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. S. Adachi, T. Nakano, H. Vliagoftis, and D. D. Metcalfe, J. Immunol., 163, 3363 (1999).

    CAS  PubMed  Google Scholar 

  6. S.–I. Harada and G. A. Rodan, Nature, 423, 349 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. M. Nakashima, K. Iohara, and M. Murakami, Endod. Top., 28, 38 (2013).

    Article  Google Scholar 

  8. W. Zhang, X. F. Walboomers, T. H. van Kuppevelt, W. F. Daamen, Z. Bian, and J. A. Jansen, Biomaterials, 27, 5658 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. M. Rücker, M. W. Laschke, D. Junker, C. Carvalho, A. Schramm, R. Mülhaupt, N.–C. Gellrich, and M. D. Menger, Biomaterials, 27, 5027 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. S. Z. Fu, X. H. Wang, G. Guo, S. Shi, M. Fan, H. Liang, F. Luo, and Z. Y. Qian, J. Biomed. Mater. Res., Part B: Appl. Biomater., 97, 74 (2011).

    Article  CAS  Google Scholar 

  11. S. Dånmark, Ph. D. Dissertation, KTH Royal Institute of Technology, Sweden, 2011.

    Google Scholar 

  12. V. Raeisdasteh Hokmabad, S. Davaran, A. Ramazani, and R. Salehi, J. Biomater. Sci., Polym. Ed., 28, 1797 (2017).

    Article  CAS  Google Scholar 

  13. F. Asghari, R. Salehi, M. Agazadeh, E. Alizadeh, K. Adibkia, M. Samiei, A. Akbarzadeh, N. A. Aval, and S. Davaran, Int. J. Polym. Mater. Polym. Biomater., 65, 720 (2016).

    Article  CAS  Google Scholar 

  14. J. A. Jadlowiec, A. B. Celil, and J. O. Hollinger, Expert Opin. Biol. Ther., 3, 409 (2003).

    CAS  PubMed  Google Scholar 

  15. K. G. Jain, S. Mohanty, A. R. Ray, R. Malhotra, and B. Airan, Indian J. Med. Res., 142, 747 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. M. Jin, N. Sultana, S. Baba, S. Hamdan, and A. F. Ismail, J. Nanomater., 16, 138 (2015).

    Google Scholar 

  17. L. Lao, Y. Wang, Y. Zhu, Y. Zhang, and C. Gao, J. Mater. Sci.: Mater. Med., 22, 1873 (2011).

    CAS  Google Scholar 

  18. G. Bluteau, H. Luder, C. De Bari, and T. Mitsiadis, Eur. Cells Mater, 16, 9 (2008).

    Google Scholar 

  19. M. Aghazadeh, M. Samiei, E. Alizadeh, P. Porkar, M. Bakhtiyari, and R. Salehi, Fiber. Polym., 18, 1468 (2017).

    Article  CAS  Google Scholar 

  20. W. Zhang, N. Yang, and X.–M. Shi, J. Biol. Chem., 283, 4723 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. J. H. Lee, T. G. Park, H. S. Park, D. S. Lee, Y. K. Lee, S. C. Yoon, and J.–D. Nam, Biomaterials, 24, 2773 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. A. L. Boskey, J. Cell. Biochem., 72, 83 (1998).

    Article  PubMed  Google Scholar 

  23. S. Levenberg and R. Langer, Curr. Top. Dev. Biol., 61, 113 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. G. Millington, Clin. Exp. Dermatol., 31, 407 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. P. Aspenberg, L. I. Hansson, and K.–G. Thorngren, Cells Tissues Organs, 121, 84 (1985).

    Article  CAS  Google Scholar 

  26. J. Cornish, K. E. Callon, K. G. Mountjoy, U. Bava, J.–M. Lin, D. E. Myers, D. Naot, and I. R. Reid, Am. J. Physiol.–Endocrinol. Metab., 284, E1181 (2003).

    Google Scholar 

  27. A. Stenström, L. Hansson, and K.–G. Thorngren, Experientia, 35, 132 (1979).

    Article  PubMed  Google Scholar 

  28. F. Fioretti, C. Mendoza–Palomares, M. Avoaka–Boni, J. Ramaroson, S. Bahi, L. Richert, F. Granier, N. Benkirane–Jessel, and Y. Haikel, J. Biomed. Nanotechnol., 7, 471 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. F. Fioretti, C. Mendoza–Palomares, M. Helms, D. Al Alam, L. Richert, Y. Arntz, S. Rinckenbach, F. Garnier, Y. Haïkel, and S. C. Gangloff, ACS Nano, 4, 3277 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. N. Benkirane–Jessel, C. M. Palomares, and F. Fioretti, “Compound Comprising α–MSH for Use in Endodontic Regeneration”, Google Patents, 2014.

    Google Scholar 

  31. P. Broulik, Physiol. Res., 45, 449 (1996).

    CAS  PubMed  Google Scholar 

  32. S. Thaweboon, B. Thaweboon, P. Chunhabundit, and P. Suppukpatana, Southeast Asian J. Trop. Med. Public Health, 34, 915 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Salehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Samiei, M., Hokmabad, V.R. et al. The Effect of Melanocyte Stimulating Hormone and Hydroxyapatite on Osteogenesis in Pulp Stem Cells of Human Teeth Transferred into Polyester Scaffolds. Fibers Polym 19, 2245–2253 (2018). https://doi.org/10.1007/s12221-018-8309-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8309-6

Keywords

Navigation