Skip to main content
Log in

Fabrication of poly(vinyl alcohol) nanofibers by wire electrode-incorporated electrospinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Wire electrodes for needleless electrospinning consist of stainless steel wires in place of cylinder electrodes. The effects of different numbers of constituent stainless steel wires on the morphology and diameter of polyvinyl alcohol (PVA) fibers are examined. With 1, 2, 3, or 4 stainless steel wires being twisted as wire electrodes, an 8, 10, or 12 wt.% polyvinyl alcohol (PVA) solution is electrospun into PVA nanofibers by using a needleless electrospinning machine. The morphology and diameter of PVA nanofibers is observed by scanning electron microscopy. The combination of the number of stainless steel wires (two), PVA solution (10 wt.%), and the collecting distance (10 cm) results in the finest diameter and an evenly formed fiber morphology. In addition, the nanofibers exhibit a wide range of diameters when electrospun with an electrode consisting of more than two stainless steel wires. Compared with the cylinder electrode, the use of a wire electrode can form nanofibers, which results in a more even morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nirmala, D. Kalpana, J. W. Jeong, H. J. Oh, J.-H. Lee, R. Navamathavan, Y. S. Lee, and H. Y. Kim, Colloid. Surf. A: Physicochem. Eng. Asp., 384, 605 (2011).

    Article  CAS  Google Scholar 

  2. X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, J. Control. Release, 185, 12 (2014).

    Article  CAS  Google Scholar 

  3. H. Zhang, S. Li, C. J. Branford White, X. Ning, H. Nie, and L. Zhu, Electrochim. Acta, 54, 5739 (2009).

    Article  CAS  Google Scholar 

  4. Y. Liu, R. Wang, H. Ma, B. S. Hsiao, and B. Chu, Polymer, 54, 548 (2013).

    Article  CAS  Google Scholar 

  5. A. Cooper, R. Oldinski, H. Ma, J. D. Bryers, and M. Zhang, Carbohydr. Polym., 92, 254 (2013).

    Article  CAS  Google Scholar 

  6. Y.-L. Huang, A. Baji, H.-W. Tien, Y.-K. Yang, S.-Y. Yang, S.-Y. Wu, C.-C. M. Ma, H.-Y. Liu, Y.-W. Mai, and N.-H. Wang, Carbon, 50, 3473 (2012).

    Article  CAS  Google Scholar 

  7. F. Anton, U. S. Patent, 1975504 (1934).

    Google Scholar 

  8. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  9. W. S. Khan, R. Asmatulu, M. Ceylan, and A. Jabbarnia, Fiber. Polym., 14, 1235 (2013).

    Article  CAS  Google Scholar 

  10. J. He, L. Wang, R. Liu, M. Zhang, W. Tan, and Y. Wu, Fiber. Polym., 15, 2283 (2014).

    Article  CAS  Google Scholar 

  11. D. Nurwaha and X. Wang, Fiber. Polym., 16, 850 (2015).

    Article  Google Scholar 

  12. A. Valipouri, S. A. H. Ravandi, and A. R. Pishevar, Fiber. Polym., 14, 941 (2013).

    Article  CAS  Google Scholar 

  13. X. Wang, T. Lin, and X. Wang, Fiber. Polym., 15, 961 (2014).

    Article  CAS  Google Scholar 

  14. F. Cengiz-Çallioğlu, O. Jirsak, and M. Dayik, Fiber. Polym., 13, 1266 (2012).

    Article  Google Scholar 

  15. H. Niu and T. Lin, J. Nanomater., 2012, 12 (2012).

    Google Scholar 

  16. G. Jiang, S. Zhang, and X. Qin, Mater. Lett., 106, 56 (2013).

    Article  CAS  Google Scholar 

  17. H. Niu, T. Lin, and X. Wang, J. Appl. Polym. Sci., 114, 3524 (2009).

    Article  CAS  Google Scholar 

  18. X. Wang, X. Hu, X. Qiu, X. Huang, D. Wu, and D. Sun, Mater. Lett., 99, 21 (2013).

    Article  CAS  Google Scholar 

  19. F.-L. Zhou, R.-H. Gong, and I. Porat, J. Mater. Sci., 44, 5501 (2009).

    Article  CAS  Google Scholar 

  20. C. Huang, H. Niu, C. Wu, Q. Ke, X. Mo, and T. Lin, J. Biomed. Mater. Res. Part A, 101, 115 (2013).

    Article  Google Scholar 

  21. D. Wu, X. Huang, X. Lai, D. Sun, and L. Lin, J. Nanosci. Nanotechnol., 10, 4221 (2010).

    Article  CAS  Google Scholar 

  22. A. L. Yarin and E. Zussman, Polymer, 45, 2977 (2004).

    Article  CAS  Google Scholar 

  23. J. Chaloupek, O. Jirsak, V. Kotek, D. Lukas, L. Martinova, and F. Sanetrnik, U. S. Patent, 7585437 (2005).

    Google Scholar 

  24. Y. Liu and J.-H. He, Int. J. Nonlin. Sci. Num., 8, 393 (2007).

    CAS  Google Scholar 

  25. Y. Liu, J.-H. He, and J.-Y. Yu, J. Phys. Conf. Ser., 96, 012001 (2008).

    Article  Google Scholar 

  26. X. Wang, H. Niu, T. Lin, and X. Wang, Polym. Eng. Sci., 49, 1582 (2009).

    Article  CAS  Google Scholar 

  27. X. Wang, H. Niu, X. Wang, and T. Lin, J. Nanomater., 2012, 3 (2012).

    Google Scholar 

  28. T. Lin, X. Wang, X. Wang, and H. Niu, W.O. Patent, 2010043002 A1 (2011).

    Google Scholar 

  29. K. M. Forward and G. C. Rutledge, Chem. Eng. J., 183, 492 (2012).

    Article  CAS  Google Scholar 

  30. I. Bhattacharyya, M. C. Molaro, R. D. Braatz, and G. C. Rutledge, Chem. Eng. J., 289, 203 (2016).

    Article  CAS  Google Scholar 

  31. H. Itoh, Y. Li, K. H. K. Chan, and M. Kotaki, Polymer Bull., DOI:10.1007/s00289-016-1620-8 (2016).

    Google Scholar 

  32. H. Jani, P. Toni, S. Eero, and R. Mikko, Nanotechnology, 26, 025301 (2015).

    Article  Google Scholar 

  33. S. L. Liu, Y. Y. Huang, H. D. Zhang, B. Sun, J. C. Zhang, and Y. Z. Long, Mater. Res. Innov., 18, S4 (2014).

    Google Scholar 

  34. X. Wang, X. Wang, and T. Lin, J. Mater. Res., 27, 3013 (2012).

    Article  CAS  Google Scholar 

  35. Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  36. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, CT., Lou, CW., Pan, YJ. et al. Fabrication of poly(vinyl alcohol) nanofibers by wire electrode-incorporated electrospinning. Fibers Polym 17, 1217–1226 (2016). https://doi.org/10.1007/s12221-016-6370-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6370-6

Keywords

Navigation