Skip to main content
Log in

Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper reports a study on the thermal stability and flame-retardant properties of microencapsulated phase change materials (PCMs) with clay nano-particles (Clay-NPs) doped gelatin/sodium alginate shell. The novel microcapsules were fabricated by the technique of complex coacervation using gelatin and sodium alginate as the shell and PCM n-eicosane as the core. Their flame retardant property as well as their practicable thermal performances when incorporated into woven cotton fabrics by pad-dry-cure were investigated. Thermal storage/release properties of the prepared microcapsules were analyzed using DSC instrument. Thermal gravimetry (TG) analysis was performed to measure the thermal stability and surface morphology of the microcapsules was observed by means of optical microscopy and SEM. The DSC results indicated that the latent heat storage capacity of prepared microcapsules changed in range of 97-114 J/g. The microcapsules had spherical shape with particle sizes between 1.37 μm and 1.6 μm. The PCM microcapsules (PCMMs) and nano-composite PCM microcapsules (NCPCMMs) with clay-NPs doped gelatin/sodium alginate shell were found to have good potential for developing thermal comfort in textiles. Comparing with conventional PCMMs, NCPCMMs have significantly better thermal stability. Nano-composite structure of the NCPCMMs, in which clay-NPs doped in the polymeric shell structure, attributed to increase the shell thermal stability. Improved flame retardant properties of the cotton fabrics treated with NCPCMs were declared as a result of flame retardant tests. Thermo-regulating properties of the fabrics were proved by thermal history (THistory) measurement results from releasing heat from microcapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Hassabo, Carbohydr. Polym., 101, 912 (2014).

    Article  CAS  Google Scholar 

  2. A. Safavi, M. Amani-Tehran, and M. Latifi, Thermochim. Acta, 594, 16 (2014).

    Article  CAS  Google Scholar 

  3. A. Kumar, P. S. Kulkarni, and A. B. Samui, Cellulose, 21, 685 (2014).

    Article  CAS  Google Scholar 

  4. R. Al-Shannaq, M. Farid, S. Al-Muhtaseb, and J. Kurdi, Sol. Energy Mater. Sol. Cells, 132, 311 (2015).

    Article  CAS  Google Scholar 

  5. X. X. Zhang, X. M. Tao, K. L. Yick, and X. C. Wang, Colloid. Polym. Sci., 282, 330 (2004).

    Article  CAS  Google Scholar 

  6. L. Sánchez, P. Sánchez, M. Carmona, A. Lucas, and J. F. Rodriguez, Colloid. Polym. Sci., 286, 1019 (2008).

    Article  Google Scholar 

  7. X. Qiu, L. Lu, J. Wang, G. Tang, and G. Song, Sol. Energy Mater. Sol. Cells, 128, 102 (2014).

    Article  CAS  Google Scholar 

  8. J. S. Cho, A. Kwon, and C. G. Cho, Colloid. Polym. Sci., 280, 260 (2002).

    Article  CAS  Google Scholar 

  9. G. L. Zou, Z. C. Tan, X. Z. Lan, L. X. Sun, and T. Zhang, Chinese Chem. Lett., 15, 729 (2004).

    CAS  Google Scholar 

  10. H. Zhang and X. Wang, Sol. Energy Mater. Sol. Cells, 93, 1366 (2009).

    Article  CAS  Google Scholar 

  11. A. Sari, C. Alkan, and C. Bilgin, Appl. Energy, 136, 217 (2014).

    Article  CAS  Google Scholar 

  12. Z. H. Chen, F. Yu, X. R. Zeng, and Z. G. Zhang, Appl. Energy, 91, 7 (2012).

    Article  CAS  Google Scholar 

  13. A. Sari, C. Alkan, A. Biçer, A. Altuntas, and C. Bilgin, Energy Conv. Manag., 86, 614 (2014).

    Article  CAS  Google Scholar 

  14. M. N. A. Hawlader, M. S. Uddin, and H. J. Zhu, Int. J. Sustain. Eng., 20, 227 (2000).

    Google Scholar 

  15. S. S. Deveci and G. Basal, Colloid. Polym. Sci., 287, 1455 (2009).

    Article  CAS  Google Scholar 

  16. M. Malekipirbazari, S. M. Sadrameli, F. Dorkoosh, and H. Sharifi, Int. J. Energy Res., 38, 1492 (2014).

    Article  CAS  Google Scholar 

  17. R. Yang, H. Xu, and H. Zhang, Sol. Energy Mater. Sol. Cells, 80, 405 (2003).

    Article  CAS  Google Scholar 

  18. M. Palanikkumaran, K. K. Gupta, A. K. Agrawal, and M. Jassal, J. Appl. Polym. Sci., 114, 2997 (2009).

    Article  CAS  Google Scholar 

  19. C. C. Chang, Y. L. Tsai, J. J. Chiu, and H. Chen, J. Appl. Polym. Sci., 112, 1850 (2009).

    Article  CAS  Google Scholar 

  20. S. T. Latibari, M. Mehrali, T. M. I. Mahlia, and H. S. C. Metselaar, Energy, 61, 664 (2013).

    Article  Google Scholar 

  21. M. N. A. Hawlader, M. S. Uddin, and M. M. Khin, Appl. Energy, 74, 195 (2003).

    Article  CAS  Google Scholar 

  22. C. Alkan, A. Sari, A. Karaipekli, and O. Uzun, Sol. Energy Mater. Sol. Cells, 93, 143 (2009).

    Article  CAS  Google Scholar 

  23. A. Sari, C. Alkan, and A. Karaipekli, Appl. Energy, 87, 1529 (2010).

    Article  CAS  Google Scholar 

  24. C. Alkan, A. Sari, and A. Karaipekli, Energy Conv. Manag., 52, 687 (2011).

    Article  CAS  Google Scholar 

  25. Y. Ma, X. Chu, W. Li, and G. Tang, Sol. Energy, 86, 2056 (2012).

    Article  CAS  Google Scholar 

  26. X. Qiu, W. Li, G. Song, X. Chu, and G. Tang, Sol. Energy Mater. Sol. Cells, 98, 283 (2012).

    Article  CAS  Google Scholar 

  27. Y. Wang, H. Shi, T. D. Xia, T. Zhang, and H. X. Feng, Mater. Chem. Phys., 135, 181 (2012).

    Article  CAS  Google Scholar 

  28. S. Alay, F. Göde, and C. Alkan, J. Appl. Polym. Sci., 120, 2821 (2011).

    Article  CAS  Google Scholar 

  29. L. Sánchez, P. Sánchez, A. Lucas, M. Carmona, and J. F. Rodríguez, Colloid. Polym. Sci., 285, 1377 (2007).

    Article  Google Scholar 

  30. F. Yu, Z. H. Chen, and X. R. Zeng, Colloid. Polym. Sci., 287, 549 (2009).

    Article  CAS  Google Scholar 

  31. Z. Jin, Y. Wang, J. Liu, and Z. Yang, Polymer, 49, 2903 (2008).

    Article  CAS  Google Scholar 

  32. H. Zhang and X. Wang, Colloid Surf. A-Physicochem. Eng. Asp., 332, 129 (2009).

    Article  CAS  Google Scholar 

  33. C. Liang, X. Lingling, S. Hongbo, and Z. Zhibin, Energy Conv. Manag., 50, 723 (2009).

    Article  Google Scholar 

  34. L. Bayes-Garcia, L. Ventola, R. Cordobilla, R. Benages, T. Calvet, and M. A. Cuevas-Diarte, Sol. Energy Mater. Sol. Cells, 94, 1235 (2010).

    Article  CAS  Google Scholar 

  35. S. Yu, X. Wang, and D. Wu, Appl. Energy, 114, 632 (2014).

    Article  CAS  Google Scholar 

  36. Q. Song, Y. Li, J. Xing, J. Y. Hu, and Y. Marcus, Polymer, 48, 3317 (2007).

    Article  CAS  Google Scholar 

  37. L. Y. Wang, P. S. Tsai, and Y. M. Yang, J. Microencapsul., 23, 3 (2006).

    Article  Google Scholar 

  38. H. Zhang, X. Wang, and D. Wu, J. Colloid Interf. Sci., 343, 246 (2010).

    Article  CAS  Google Scholar 

  39. L. Pan, Q. Tao, S. Zhang, S. Wang, J. Zhang, S. Wang, Z. Wang, and Z. Zhang, Sol. Energy Mater. Sol. Cells, 98, 66 (2012).

    Article  CAS  Google Scholar 

  40. B. Li, T. Liu, L. Hu, Y. Wang, and L. Gao, ACS Sustain. Chem. Eng., 1, 374 (2013).

    Article  CAS  Google Scholar 

  41. S. Demirbag and S. Alay Aksoy, J. Text. Eng., 20, 27 (2013).

    Article  CAS  Google Scholar 

  42. S. Demirbag, M.Sc. Thesis, The Graduate School of Natural and Applied Sciences, Suleyman Demirel University, 2014.

    Google Scholar 

  43. A. Kuru and S. Alay Aksoy, Text. Res. J., 84, 337 (2014).

    Article  Google Scholar 

  44. Y. Boan, Ph. D. Dissertation, The Hong Kong Polytechnic University, Hong Kong, 2005.

    Google Scholar 

  45. W. Bendrowska, “Intelligent Textiles with PCMs. In: Mattila Intelligent Textiles and Clothing”, pp.34–62, Woodhead Publishing in Textiles, Cambridge, England, 2006.

    Book  Google Scholar 

  46. S. Mondal, Appl. Therm. Eng., 28, 1536 (2008).

    Article  CAS  Google Scholar 

  47. Y. Shin, D. I. Yoo, and K. Son, J. Appl. Polym. Sci., 96, 2005 (2005).

    Article  CAS  Google Scholar 

  48. F. Salaün, E. Devaux, S. Bourbigot, and P. Rumeau, Thermochim. Acta, 506, 82 (2010).

    Article  Google Scholar 

  49. J. Hickey, N. A. D. Burke, and H. D. H. Stöver, J. Membr. Sci., 369, 68 (2011).

    Article  CAS  Google Scholar 

  50. G. Basal, S. S. Deveci, D. Yalçin, and O. Bayraktar, J. Appl. Polym. Sci., 121, 1885 (2011).

    Article  CAS  Google Scholar 

  51. F. Chuanjie and Z. Xiaodong, Polym. Adv. Technol., 20, 934 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sennur Alay Aksoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirbağ, S., Aksoy, S.A. Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics. Fibers Polym 17, 408–417 (2016). https://doi.org/10.1007/s12221-016-5113-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5113-z

Keywords

Navigation