Skip to main content
Log in

Surface hydro-properties of electrospun fiber mats

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Hydrophobic and hydrophilic properties (hydro-properties) on material surfaces have been an active research area due to their numerous practical applications. Various fiber mats were prepared to investigate the effect of fiber morphology on the surface properties. Four polymers with intrinsically different hydro-properties are used to fabricate the electrospun fibers with diameter ranging from 0.1 μm to 10 μm by both methods of melt and solution. The pore size, pore size distribution, porosity, and the surface roughness of electrospun fiber mats are evaluated by a Porometry and an image processing technique. The contact angles are measured to characterize the surface properties of fiber mats using the mixture solutions of water and ethanol. As a result, the pore size and surface roughness are closely related to the contact angles. The contact angle is highly increased with the large deviation of fiber diameter and the high surface roughness of fiber mats. It is noted that the designed surface property is achieved by modifying fiber morphology without any complex treatment of material surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, J. Mater. Chem., 18, 621 2008.

    Article  CAS  Google Scholar 

  2. S. Lee and S. J. Obendorf, Appl. Polym. Sci., 102, 3430 2006.

    Article  CAS  Google Scholar 

  3. K. Luu, K. Kim, S. Hsiao, B. Chu, and M. J. Hadjiargyrou, J. Control. Release, 89, 341 2003.

    Article  CAS  Google Scholar 

  4. M. Yue, B. Zhou, K. Jiao, X. Qian, Z. Xu, K. Teng, L. Zhao, J. Wang, and Y. Jiao, Appl. Surf. Sci., 327, 93 2015.

    Article  CAS  Google Scholar 

  5. Y. Liao, C. Loh, R. Wang, and A. G. Fane, ACS Appl. Mater. Interfaces, 6, 16035 2014.

    Article  CAS  Google Scholar 

  6. R. Menini and M. Farzaneh, Polym. Int., 57, 77 2008.

    Article  CAS  Google Scholar 

  7. M. Kang, R. Jung, H. S. Kim, and H. J. Jin, Colloid Surf. A-Physicochem. Eng. Asp., 313-314, 411 2008.

    Google Scholar 

  8. S. Sarkar, A. Chunder, W. Fei, L. An, and L. Zhai, J. Am. Ceram. Soc., 91, 2751 2008.

    Article  CAS  Google Scholar 

  9. M. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledg, Macromolecules, 38, 9742 2005.

    Article  CAS  Google Scholar 

  10. S. Agarwal, S. Horst, and M. Bognitzki, Macromol. Mater. Eng., 291, 592 2006.

    Article  CAS  Google Scholar 

  11. Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashinoto, Langmuir, 18, 5818 2002.

    Article  CAS  Google Scholar 

  12. H. J. Lee and S. J. Michielsen, J. Polym. Sci. Pt. B-Polym. Phys., 45, 253 2007.

    Article  CAS  Google Scholar 

  13. S. J. Yeoh, Ph.D. Dissertation, Vancouver, 2009.

    Google Scholar 

  14. N. Nuraje, W. S. Khan, Y. Lei, M. Ceylan, and R. Asmatulu, J. Mater. Chem., 1, 1929 2013.

    Article  CAS  Google Scholar 

  15. D. Cho, A. Naydich, M. W. Frey, and Y. L. Joo, Polymer, 54, 2364 2013.

    Article  CAS  Google Scholar 

  16. W. S. Khan, R. Asmatulu, M. Ceylan, and A. Jabbarnia, Fiber. Polym., 14, 1235 2013.

    Article  CAS  Google Scholar 

  17. A. B. Dikko, N. Z. Oriolowo, and S. Edwin, Int. J. Multi. Res. Dev., 2, 118 2015.

    Google Scholar 

  18. J. Lyons, C. Li, and F. Ko, Polymer, 45, 7597 2004.

    Article  CAS  Google Scholar 

  19. D. Cho, E. Zhmayev, and Y. L. Joo, Polymer, 52, 4600 2011.

    Article  CAS  Google Scholar 

  20. J. T. McCann, M. Marquez, and Y. Xia, Nano Lett., 6, 2868 2006.

    Article  CAS  Google Scholar 

  21. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 2003.

    Article  CAS  Google Scholar 

  22. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaram, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 557 2005.

    Article  CAS  Google Scholar 

  23. D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 2008.

    Article  CAS  Google Scholar 

  24. R. C. Gonzalez and R. E. Woods, “Digital Image Processing”, 3rd ed., pp.104–193, Addison Wesley, MA, 1992.

    Google Scholar 

  25. Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee, Eur. Polym. J., 39, 1883 2003.

    Article  CAS  Google Scholar 

  26. D. Li, M. W. Frey, and Y. L. Joo, J. Membr. Sci., 286, 104 2006.

    Article  CAS  Google Scholar 

  27. M. Ziabari, V. Mottaghitalab, and A. K. Haghi, Korean J. Chem. Eng., 25, 923 2008.

    Article  CAS  Google Scholar 

  28. I. H. Sul, K. H. Hong, H. Shim, and T. J. Kang, Text. Res. J., 76, 828 2006.

    Article  CAS  Google Scholar 

  29. A. Lafuma and D. Quere, Nat. Mater., 2, 457 2003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehwan Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, D., Chen, S., Jeong, Y. et al. Surface hydro-properties of electrospun fiber mats. Fibers Polym 16, 1578–1586 (2015). https://doi.org/10.1007/s12221-015-5258-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5258-1

Keywords

Navigation