Skip to main content
Log in

Modeling and experimental validation of transverse compressive behavior of sepiolite reinforced rubber composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper presents an experimental and numerical study on the transverse compressive behavior of sepiolite reinforced rubber sealing composites (SRRC). A finite element model of the representative volume element (RVE) extracted from the mesoscopic structure is established, in which the fibers are randomly distributed and the cohesive elements are embedded in the fiber/matrix interface. The RVE model with different sepiolite fiber volume fractions (20 %, 33 % and 42 %) are analyzed, where the interface with perfect bonding condition or not is considered. On the assumption that the fiber/ matrix interface is perfect bonded, the compressive stress-strain curve of SRRC with the fiber volume fraction of 33 % is obtained. The result indicates that the assumption of perfect bonding is not appropriate to predict the compressive behavior of SRRC when the compressive strain is larger than 0.1. An interfacial parametric study with the fiber volume fraction of 33 % is carried out to assess the effect of the interfacial properties on the stress-strain relationship. It is found that the simulation results agree well with the experimental result when the interfacial strength is 2 MPa and the interfacial fracture energy is larger than 0.5 J/m2. The effects of different fiber volume fractions (20 % and 42 %) with the certain interfacial parameters on the compressive behavior of SRRC are investigated. The results reveal that the predictions agree well with experimental data, which indicates that the proposed approach gives an advantage in evaluating the transverse compression behavior of SRRC without further morphological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Q. Gu, Y. Chen, and J. F. Zhou in “Advances in Composite Materials — Ecodesign and Analysis”, 1st ed., pp.21–54, InTech, Rijeka, Croatia, 2011.

    Google Scholar 

  2. B. Q. Gu and Y. Chen, Key Eng. Mater., 353, 1243 (2007).

    Article  Google Scholar 

  3. J. H. Lee and Y. G. Jeong, Fiber. Polym., 12, 180 (2011).

    Article  CAS  Google Scholar 

  4. M. Joshi, M. Shaw, and B. S. Butola, Fiber. Polym., 5, 59 (2004).

    Article  CAS  Google Scholar 

  5. M. Andideh, G. Naderi, M. H. R. Ghoreishy, and S. Soltani, Fiber. Polym., 15, 814 (2014).

    Article  CAS  Google Scholar 

  6. C. Chen, J. Liang, F. Wang, Q. Tang, and Y. Chen, J. Nanosci. Nanotechnol., 14, 3515 (2014).

    CAS  Google Scholar 

  7. V. H. Orozco, A. F. Vargas, W. Brostow, T. Datashvili, B. L. López, K. Mei, and L. Su, J. Nanosci. Nanotechnol., 14, 4918 (2014).

    CAS  Google Scholar 

  8. F. M. Fernandes, A. I. Ruiz, M. Darder, P. Aranda, and E. Ruiz-Hitzky, J. Nanosci. Nanotechnol., 9, 221 (2009).

    CAS  Google Scholar 

  9. P. Cui, X. Wang, and X. W. Tangpong, J. Nanosci. Nanotechnol., 12, 8330 (2012).

    Article  CAS  Google Scholar 

  10. S. Rana, R. Alagirusamy, and M. Joshi, J. Nanosci. Nanotechnol., 11, 7033 (2011).

    Article  CAS  Google Scholar 

  11. H. Zhang, L. Tang, G. Liu, D. Zhang, L. Zhou, and Z. Zhang, J. Nanosci. Nanotechnol., 10, 7526 (2010).

    Article  CAS  Google Scholar 

  12. J. Moraleda, J. Segurado, and J. LLorca, J. Mech. Phys. Solids., 57, 1596 (2009).

    Article  CAS  Google Scholar 

  13. S. Soltani, G. Naderi, and S. Mohseniyan, Fiber. Polym., 15, 2360 (2014).

    Article  CAS  Google Scholar 

  14. X. Li, Y. Xia, Z. Li, and Y. Xia, Compos. Mater. Sci., 55, 157 (2012).

    Article  CAS  Google Scholar 

  15. X. Wang, B. Zhang, S. Du, Y. Wu, and X. Sun, Mater. Des., 31, 2464 (2010).

    Article  CAS  Google Scholar 

  16. J. Xiaoyu, G. Qing, and K. Guozheng, Compos. Sci. Technol., 58, 1685 (1998).

    Article  Google Scholar 

  17. H. Huang and R. Talreja, Compos. Sci. Technol., 66, 2743 (2006).

    Article  CAS  Google Scholar 

  18. S. Kari, H. Berger, and U. Gabbert, Compos. Mater. Sci., 39, 198 (2007).

    Article  CAS  Google Scholar 

  19. D. Trias, J. Costa, J. A. Mayugo, and J. E. Hurtado, Compos. Mater. Sci., 38, 316 (2006).

    Article  CAS  Google Scholar 

  20. D. J. Lee, H. Oh, Y. S. Song, and J. R. Youn, Compos. Sci. Technol., 72, 278 (2012).

    Article  CAS  Google Scholar 

  21. T. J. Vaughan and C. T. McCarthy, Compos. Sci. Technol., 71, 388 (2011).

    Article  CAS  Google Scholar 

  22. C. González and J. Lorca, Compos. Sci. Technol., 67, 2795 (2007).

    Article  Google Scholar 

  23. B. Zhang, B. Gu, and X. Yu, J. Appl. Polym. Sci., 132, doi:10.1002/app.41672 (2015).

    Google Scholar 

  24. M. Tian, L. Su, W. Cai, S. Yin, and Q. Chen, J. Appl. Polym. Sci., 120, 1439 (2011).

    Article  CAS  Google Scholar 

  25. C. Hintze, R. Boldt, S. Wiessner, and G. Heinrich, J. Appl. Polym. Sci., 130, 1682 (2013).

    Article  CAS  Google Scholar 

  26. F. Naddeo, N. Cappetti, and A. Naddeo, Compos. Mater. Sci., 81, 239 (2014).

    Article  Google Scholar 

  27. F. Ballani, D. J. Daley, and D. Stoyan, Compos. Mater. Sci., 35, 399 (2006).

    Article  CAS  Google Scholar 

  28. I. Monetto and W. J. Drugan, J. Mech. Phys. Solids, 52, 359 (2004).

    Article  Google Scholar 

  29. J. Segurado and J. Lorca, Acta Mater., 53, 4931 (2005).

    Article  CAS  Google Scholar 

  30. D. P. N. Vlasveld, M. De Jong, H. E. N. Bersee, A. D. Gotsis, and S. J. Picken, Polymer, 46, 10279 (2005).

    Article  CAS  Google Scholar 

  31. F. López Jiménez and S. Pellegrino, Int. J. Solids Struct., 49, 635 (2012).

    Article  Google Scholar 

  32. L. Yang, Y. Yan, Y. Liu, and Z. Ran, Compos. Sci. Technol., 72, 1818 (2012).

    Article  CAS  Google Scholar 

  33. M. Romanowicz, Compos. Mater. Sci., 47, 225 (2009).

    Article  CAS  Google Scholar 

  34. T. Takei, R. Oda, A. Miura, N. Kumada, N. Kinomura, R. Ohki, and H. Koshiyama, Compos. Pt. B-Eng., 44, 260 (2013).

    Article  CAS  Google Scholar 

  35. J. Moraleda, J. Segurado, and J. Llorca, Int. J. Solids Struct., 46, 4287 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boqin Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Gu, B. & Zhang, B. Modeling and experimental validation of transverse compressive behavior of sepiolite reinforced rubber composites. Fibers Polym 16, 2258–2265 (2015). https://doi.org/10.1007/s12221-015-5212-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5212-2

Keywords

Navigation