Skip to main content
Log in

Multi-objective optimization of the coat-hanger die for melt-blowing process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, a multi-objective genetic algorithm based on the numerical simulation of the polymer flow is proposed to optimize the geometry parameters of the coat-hanger die with uniform outlet velocity and minimal residence time. The vector evaluated GA method is used to find the parameter values for obtaining the uniform outlet velocity and minimal residence time, where the manifold angle, the land height and the slot gap are chosen to be the design variables, the outlet velocity and the residence time are obtained by simulating the three-dimensional and isothermal polymer flow in the coat-hanger die. The stochastic universal sampling (SUS) is adopted to select the new population which is representative of a coat-hanger die. The optimal geometry parameters of the coat-hanger die achieved in the 30th generation among 20 individuals of each generation, which showed that the manifold angle and the gap slot were the most influencing design parameter on the coefficient of variation (CV) value of outlet velocity and residence time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. T. Marla and R. L. Shambaugh, Ind. Eng. Chem. Res., 42, 6993 (2003).

    Article  CAS  Google Scholar 

  2. T. Chen and X. Huang. J. Dong Hua University (English Edition), 19, 1 (2002).

  3. B. D. Tate and R. L. Shambaugh, Ind. Eng. Chem. Res., 43, 5405 (2004).

    Article  CAS  Google Scholar 

  4. T. Chen, X. Wang, and X. Huang, Text. Res. J., 74, 1018 (2004).

    Article  CAS  Google Scholar 

  5. Y. Sun and X. Wang, J. Appl. Polym. Sci., 115, 1540 (2010).

    Article  CAS  Google Scholar 

  6. Y. Zeng, Y. Sun, and X. Wang, J. Appl. Polym. Sci., 119, 2112 (2011).

    Article  CAS  Google Scholar 

  7. T. Chen, C. Zhang, X. Chen, and L. Li, J. Appl. Polym. Sci., 111, 1775 (2009).

    Article  CAS  Google Scholar 

  8. T. Chen, X. Wang, and X. Huang, Text. Res. J., 75, 76 (2005).

    Article  CAS  Google Scholar 

  9. Q. Sun and D. Zhang, J. Appl. Polym. Sci., 67, 193 (1998).

    Article  CAS  Google Scholar 

  10. X. Wang, T. Chen, and X. Huang, J. Appl. Polym. Sci., 101, 1570 (2006).

    Article  CAS  Google Scholar 

  11. N. Lebaal, F. Schmidt, and S. Puissant, Finite Elem. Anal. Des., 45, 333 (2009).

    Article  Google Scholar 

  12. N. Lebaal, S. Puissant, and F. Schmidt, Int. J. Mater. Form., 3, 47 (2010).

    Article  Google Scholar 

  13. Y. Huang, C. R. Gentle, and J. B. Hull, Adv. Polym. Technol., 23, 111 (2004).

    Article  CAS  Google Scholar 

  14. K. Meng, X. Wang, and X. Huang, J. Appl. Polym. Sci., 108, 2523 (2008).

    Article  CAS  Google Scholar 

  15. K. Meng, X. Wang, and X. Huang, Polym. Eng. Sci., 49, 354 (2009).

    Article  CAS  Google Scholar 

  16. Y. Matsubara, Polym. Eng. Sci., 20, 716 (1980).

    Article  Google Scholar 

  17. Y. Matsubara, Polym. Eng. Sci., 20, 212 (1980).

    Article  CAS  Google Scholar 

  18. C. Huang, S. Tsay, and Y. Wang, Polym. Eng. Sci., 33, 709 (1993).

    Article  CAS  Google Scholar 

  19. Y. Wang, C. Huang, and S. Tsay, Plast, Rubber and Compos. Proc. Appl., 20, 43 (1993).

    Google Scholar 

  20. J. F. T. Pittman and R. Sander, Int. Polym. Proc., 9, 326 (1994).

    CAS  Google Scholar 

  21. M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain, IEEE Tran. Evolu. Comp., 4, 164 (2000).

    Article  Google Scholar 

  22. J. R. Cano, F. Herrera, and M. Lozano, IEEE Tran. Evolu. Comp., 7, 561 (2003).

    Article  Google Scholar 

  23. Y. Matsubara, Polym. Eng. Sci., 19, 169 (1979).

    Article  CAS  Google Scholar 

  24. C. Huang and T. Tang, Int. J. Adv. Manuf. Technol., 27, 1113 (2006).

    Article  Google Scholar 

  25. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

  26. W. Han and X. Wang, J. Appl. Polym. Sci., 123, 2511 (2012).

    Article  CAS  Google Scholar 

  27. S. Na and D. Kim, Korean J. Chem. Eng., 12, 236 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, W., Wang, X. Multi-objective optimization of the coat-hanger die for melt-blowing process. Fibers Polym 13, 626–631 (2012). https://doi.org/10.1007/s12221-012-0626-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0626-6

Keywords

Navigation