Skip to main content
Log in

Studies on hollownesss regulation and properties of crosslinked hollow phenolic fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The hollowness of crosslinked hollow phenolic fibers was regulated successfully from 9 % to 80 % by adjusting the curing temperature of the partially crosslinked fibers. The partially crosslinked fibers was studied in detail by mass gained, tensile strength, solvent dissolution, SEM, IR, and TG analysis, and the prepared hollow phenolic fibers with different degrees of hollowness were characterized with SEM, tensile strength, TG-DSC and TG-MS. The results show that the factor determining the hollowness is the crosslinked extent of the partially crosslinked fibers and the hollow fibers with different degrees of hollowness have similar crosslinkage, mechanical properties and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Economy and R. A. Clark, U.S. Patent, 3,650,102 (1972).

  2. D. Petrulis, J. Appl. Polym. Sci., 92, 2017 (2004).

    Article  CAS  Google Scholar 

  3. T. Nakajima, K. Kajiwara, and J. E. McIntyre, “Advanced Fiber Spinning Technology”, Chap.5, Woodhead: Cambridge, Appendix, 1994.

    Book  Google Scholar 

  4. M. Galop, A. Lamure, and C. Lacabanne, J. Appl. Polym. Sci., 78, 8 (2000).

    Article  CAS  Google Scholar 

  5. S. P. Rwei, J. Appl. Polym. Sci., 82, 2896 (2001).

    Article  CAS  Google Scholar 

  6. S. Kuwayama, M. Kasajima, and J. Hanaoka, JP2007056419-A (2007).

  7. K. Matsuda, Y. Tanaka, and K. Kikuchi, JP2006045720-A (2006).

  8. D. Q. Zhang, J. L. Shi, Q. G. Guo, Y. Song, L. Liu, and G. T. Zhai, J. Appl. Polym. Sci., 104, 2108 (2007).

    Article  CAS  Google Scholar 

  9. S. L. Hayes, “Encyclopedia of Chemical Technology”, Wiley, New York, 1981.

    Google Scholar 

  10. P. J. Bruyn, L. M. Foo, A. S. C. Lim, M. G. Looney, and D. H. Solomon, Tetrahedron, 53, 13915 (1997).

    Article  Google Scholar 

  11. K. Ohtomo and T. Nakamori, U.S. Patent, 3,996,327 (1976).

    Google Scholar 

  12. C. L. Liu, Q. G. Guo, J. L. Shi, and L. Liu, Mater. Chem. Phys., 90, 315 (2005).

    Article  CAS  Google Scholar 

  13. C. L. Liu, Y. G. Ying, H. L. Feng, and W. S. Dong, Polym. Degrad. Stab., 93, 507 (2008).

    Article  CAS  Google Scholar 

  14. W. W. David, W. Jason, S. B. Claudia, and J. K. William, Polymer, 47, 1207 (2006).

    Article  Google Scholar 

  15. K. Roczniak, T. Biernacka, and M. Skarzynski, J. Appl. Polym. Sci., 28, 39 (1983).

    Article  Google Scholar 

  16. A. F. Ismail and L. I. B. David, J. Membr. Sci., 193, 1 (2001).

    Article  CAS  Google Scholar 

  17. C. Y. Wang, M. W. Li, Y. L Wu, and C. T. Guo, Carbon, 136, 1749 (1998).

    Article  Google Scholar 

  18. K. A. Trick and T. E. Saliba, Carbon, 33, 1509 (1995).

    Article  CAS  Google Scholar 

  19. J. I. Ozaki, W. Ohizumi, and A. Oya, Carbon, 38, 1515 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Shi, J., Guo, Q. et al. Studies on hollownesss regulation and properties of crosslinked hollow phenolic fibers. Fibers Polym 13, 495–500 (2012). https://doi.org/10.1007/s12221-012-0495-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0495-z

Keywords

Navigation