Skip to main content
Log in

The impacts of thermal treatments on the physical properties of textile vascular prostheses

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

For nearly half a century textile prostheses have been intensively used in vascular surgery. They have saved millions of human lives, but they are not yet perfect. Graft failures have been, in part, attributed to the prostheses finishing processes, generally based on thermal treatments. These treatments permit to reduce fabric porosity and fix the wavy form of prosthetic tube walls involved by crimping process. Four tubular fabrics have been woven with different polyethylene terephthalate (PET) yarns spun under different industrial processes: Setila, Dacron, Diolen and Viscosuisse. Three heat setting techniques were investigated for prostheses crimping: dry heat, vapor heat and autoclaving. Crystallinity index and crystal growth in the equatorial directions have been calculated from Wide Angle X-ray Scattering scans. The aim was to analyze physical structural changes of PET fibers after thermal finishing processes applied to textile vascular prostheses and highlight fiber morphological evolutions related to these treatments. Viscosuisse yarns held the largest crystalline domains built up of numerous crystals but smaller than Dacron ones. However, the best crystalline configurations for the overall yarns were generally obtained for dry heat processes. Compromise regions of treatment conditions for prosthetic Dacron tubes were also obtained to optimize crystal development for the different crimping processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Voorhees, J. A. Jaretzki, and A. H. Blakemore, Ann. Surg., 135, 332 (1952).

    Article  Google Scholar 

  2. E. Michael, Artif. Organs, 32, 661 (2008).

    Article  Google Scholar 

  3. C. D. Etz, T. Homann, D. Silovitz, C. A. Bodian, M. Luehr, G. D. Luozzo, K. A. Plestis, and R. B. Griepp, Ann. Thorac. Surg., 84, 1206 (2007).

    Article  Google Scholar 

  4. S. Ben Abdessalem, B. Durand, S. Akesbi, N. Chakfe, and J.-G. Kretz, J. Text. Inst., 96, 117 (2005).

    Article  Google Scholar 

  5. N. Blanchemain, T. Laurent, F. Chai, C. Neut, S. Haulon, V. Krump-Konvalinkova, M. Morcellet, B. Martel, C. J. Kirkpatrick, and H. F. Hildebrand, Acta Biomater., 4, 1725 (2008).

    Article  CAS  Google Scholar 

  6. A. Cardon, N. Chakfe, F. Thaveau, E. Gagnon, O. Hartung, S. Aillet, Y. Kerdiles, Y.-M. Dion, J.-G. Kretz, and C.-J. Doillon, Ann. Vasc. Surg., 14, 543 (2000).

    Article  CAS  Google Scholar 

  7. N. Yasuharu, Y. Yoshihisa, O. Takafumi, T. Yasuko, and T. Eiji, Jap. J. Artif. Organs, 28, 547 (1999).

    Google Scholar 

  8. M. W. King, Z. Zhang, and R. Guidoin, J. Text. Appar. Technol. Manag., 1, 1 (2001).

    Google Scholar 

  9. “Medical”, Technical Usage Textiles A., 40, 36 (2001).

  10. K. Berger and L. R. Sauvage, Ann. Surg., 193, 477 (1981).

    CAS  Google Scholar 

  11. N. Lheureux, L. Germain, R. Labbe, and F. Auger, J. Vasc. Surg., 17, 499 (1993).

    Article  CAS  Google Scholar 

  12. L. E. Niklason, Science, 286, 1493 (1999).

    Article  CAS  Google Scholar 

  13. R. Smeets, A. Bozkurt, M. S. Harwoko, U. Wiesemann, C. Apel, F. Budillon, T. Gries, D. Riediger, and M. Wöltie, Technical Textiles, 3, 27 (2005).

    Google Scholar 

  14. H. Van Damme, M. Deprez, E. Creemers, and R. Limet, Acta Chir. Belg., 105, 249 (2005).

    Google Scholar 

  15. S. Ben Abdessalem, I. Zbali, N. Litim, and S. Mokhtar, Iranian Polym. J., 18, 15 (2009).

    CAS  Google Scholar 

  16. R. Guidoin, M. King, X. Deng, E. Paris, and Y. Douville, Rev. Eur. Biomed. Tech., 4, 13 (1982).

    Google Scholar 

  17. M. Feldstein and B. Pourdeyhimi, J. Mater. Sci. Lett., 9, 1061 (1990).

    Article  CAS  Google Scholar 

  18. B. Pourdeyhimi and C. Text, J. Biomater. Appl., 2, 163 (1987).

    Article  CAS  Google Scholar 

  19. B. Pourdeyhimi, Text. Prog., 15, 1 (1986).

    Article  Google Scholar 

  20. M. S. Ellison, P. E. Lopes, and W. T. Pennington, J. Engineered Fibers Fabrics, 3, 10 (2008).

    Google Scholar 

  21. S. K. Mukhopadhyay, E. M. O. Bebbington, and P. W. Foster, Text. Res. J., 62, 403 (1992).

    CAS  Google Scholar 

  22. M. Azaiez, I. Zbali, and S. Ben Abdessalem, Iranica J. Energy & Environ., 2, 79 (2011).

    Google Scholar 

  23. H. Khlif, S. Ben Abdessalem, S. Dhouib, and F. Sakli, Trends Applied Sci. Res., ISSN 1819-3579 / DOI 10.3923/tasr.2011, 2011.

  24. H. Khlif and S. Ben Abdessalem, Res. J. Text. Appar., 15, 2011.

  25. BASF, “Dyeing and Finishing of Polyester Fibers”, pp.138–141, BASF Editions, Germany, 1990.

    Google Scholar 

  26. H. M. Heuvel and R. Huisman, J. Appl. Polym. Sci., 22, 2229 (1978).

    Article  CAS  Google Scholar 

  27. M. Sotton, A. M. Arniaud, and C. Rabourdin, ITF Scientific Bulletin, 7, 265 (1978).

    CAS  Google Scholar 

  28. V. B. Gupta and S. Kumar, J. Appl. Polym. Sci., 26, 1865 (1981).

    Article  CAS  Google Scholar 

  29. J. Radhakrishnan, U. P. Kanitkar, and V. B. Gupta, J. Society Dyers & Colourists, 113, 59 (1997).

    Article  CAS  Google Scholar 

  30. P. L. Davies, U. Gather, M. Meise, D. Mergel, and T. Mildenberger, Ann. Appl. Stat., 2, 861 (2008).

    Article  Google Scholar 

  31. V. B. Gupta, J. Text. Inst., 86, 299 (1995).

    Article  CAS  Google Scholar 

  32. R. Huisman and H. M. Heuvel, J. Appl. Polym. Sci., 37, 595 (1989).

    Article  CAS  Google Scholar 

  33. I. Zbali, Ph. D. Dissertation, University of Haute Alsace, France, 2004.

  34. C. Le Clerc, Ph. D. Dissertation, University of Paris Mines, France, 2006.

  35. F. Dieval, D. Mathieu, and B. Durand, Text. Res. J., 73, 200 (2003).

    Article  CAS  Google Scholar 

  36. F. Dieval, D. Mathieu, and B. Durand, J. Text. Inst., 95, 131 (2004).

    Article  Google Scholar 

  37. G. Vassilatos, “Dynamics, Structure Development and Fiber Properties in High-Speed Spinning of Polyethylene Terephthalate” in “High Speed Fiber Spinning” (A. Ziabicki and H. Kawai Eds.), pp.421–423, Wiley-Interscience, New York, 1985.

    Google Scholar 

  38. J. Gacen, J. M. Canal, A. Naik, and F. Bernal, ITF Scientific Bulletin, 14, 35 (1985).

    CAS  Google Scholar 

  39. K. V. Datye and A. A. Vaidya, “Chemical Processing of Synthetic Fibers and Blends”, Wiley-Interscience, New York, 1984.

    Google Scholar 

  40. R. Huisman and H. M. Heuvel, J. Appl. Polym. Sci., 22, 943 (1978).

    Article  CAS  Google Scholar 

  41. M. P. W Wilson, Polymer, 15, 277 (1974).

    Article  CAS  Google Scholar 

  42. P. Bouriot, J. Jacquemart, and M. Sotton, ITF Scientific Bulletin, 6, 9 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Khlif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlif, H., Dhouib, S., Ben Abdessalem, S. et al. The impacts of thermal treatments on the physical properties of textile vascular prostheses. Fibers Polym 13, 68–78 (2012). https://doi.org/10.1007/s12221-012-0068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0068-1

Keywords

Navigation