Skip to main content
Log in

Convergence of the Calabi Flow on Toric Varieties and Related Kähler Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let X be a toric manifold with a Delzant polytope P. We show that if (X,P) is analytic uniform K-stable and the curvature is uniformly bounded along the Calabi flow, then the modified Calabi flow converges to an extremal metric exponentially fast. By assuming that the curvature is uniformly bounded along the Calabi flow, we prove a conjecture of Donaldson and a conjecture of Apostolov, Calderbank, Gauduchon, and Tønnesen-Friedman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Chen and He established the weaker regularity theorem in [10].

References

  1. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry I: general theory. J. Differ. Geom. 73, 359–412 (2006)

    MATH  Google Scholar 

  2. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry III: extremal metrics and stability. Invent. Math. 173, 547–601 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Extremal Kähler metrics on projective bundles over a curve. Adv. Math. 227, 2385–2424 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berman, R.: A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics. arXiv:1011.3976

  5. Calabi, E.: Extremal Kähler metric. In: Yau, S.T. (ed.) Seminar of Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)

    Google Scholar 

  6. Calabi, E.: Extremal Kähler metric, II. In: Chavel, I., Farkas, H.M. (eds.) Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin (1985)

    Chapter  Google Scholar 

  7. Calabi, E., Chen, X.X.: Space of Kähler metrics and Calabi flow. J. Differ. Geom. 61(2), 173–193 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Chen, X.X.: Calabi flow in Riemann surfaces revisited: a new point of view. Int. Math. Res. Not. 2001(6), 275–297 (2001)

    Article  MATH  Google Scholar 

  9. Chen, X.X., He, W.Y.: On the Calabi flow. Am. J. Math. 130(2), 539–570 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X.X., He, W.Y.: The Calabi flow on Kähler surface with bounded Sobolev constant–(I). Math. Ann. 354(1), 227–261 (2012). arXiv:0710.5159

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, X.X., He, W.Y.: The Calabi flow on toric Fano surface. Math. Res. Lett. 17(2), 231–241 (2010). arXiv:0807.3984

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, B.H., Li, A.M., Sheng, L.: Uniform K-stability for extremal metrics on toric varieties. arXiv:1109.5228

  13. Chrusciél, P.T.: Semi-global existence and convergence of solutions of the Robison-Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137, 289–313 (1991)

    Article  MATH  Google Scholar 

  14. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Donaldson, S.K.: Conjectures in Kähler geometry. In: Strings and Geometry. Clay Math. Proc., vol. 3, pp. 71–78. Am. Math. Soc., Providence (2004)

    Google Scholar 

  16. Donaldson, S.K.: Interior estimates for solutions of Abreu’s equation. Collect. Math. 56, 103–142 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Donaldson, S.K.: Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Donaldson, S.K.: Kähler geometry on toric manifolds, and some other manifolds with large symmetry. In: Handbook of Geometric Analysis. No. 1. Adv. Lect. Math. (ALM), vol. 7, pp. 29–75. International Press, Somerville (2008)

    Google Scholar 

  19. Donaldson, S.K.: Extremal metrics on toric surfaces: a continuity method. J. Differ. Geom. 79(3), 389–432 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Donaldson, S.K.: Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19(1), 83–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Donaldson, S.K.: b-Stability and blow-ups. arXiv:1107.1699

  22. Feng, R.J., Huang, H.N.: The global existence and convergence of the Calabi flow on \(\mathbb{C}^{n} = \mathbb{Z}^{n} + i \mathbb{Z}^{n}\). J. Funct. Anal. 263(4), 1129–1146 (2012). doi:10.1016/j.jfa.2012.05.017

    Article  MATH  MathSciNet  Google Scholar 

  23. Huang, H.N.: On the extension of the Calabi flow on toric varieties. Ann. Glob. Anal. Geom. 40(1), 1–19 (2011). arXiv:1101.0638

    Article  MATH  Google Scholar 

  24. Huang, H.N.: Toric surface, K-stability and Calabi flow. arXiv:1207.5964

  25. Huang, H.N., Zheng, K.: Stability of Calabi flow near an extremal metric. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 11(1), 167–175 (2012). arXiv:1007.4571

    MATH  MathSciNet  Google Scholar 

  26. Raza, A.A.: Scalar curvature and multiplicity-free actions. Ph.D. thesis, Imperial College London (2005)

  27. Streets, J.: The long time behavior of fourth-order curvature flows. Calc. Var. Partial. Differ. Equ. 46(1–2), 39–54 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Struwe, M.: Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 1(2), 247–274 (2002)

    MATH  MathSciNet  Google Scholar 

  29. Székelyhidi, G.: Optimal test-configurations for toric varieties. J. Differ. Geom. 80, 501–523 (2008)

    MATH  Google Scholar 

  30. Székelyhidi, G.: Filtrations and test-configurations. arXiv:1111.4986

  31. Székelyhidi, G.: Extremal metrics and K-stability. Ph.D. thesis, Imperial college

  32. Tian, G.: Kähler-Einstein metrics of positive scalar curvature. Invent. Math. 130, 1–57 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tosatti, V.: Kähler-Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yau, S.T.: Review of Kähler-Einstein metrics in algebraic geometry. Isr.l Math. Conf. Proc., Bar-Ilan Univ. 9, 433–443 (1996)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Vestislav Apostolov and Gábor Székelyhidi for many stimulating discussions. He is also grateful to the consistent support of Professor Xiuxiong Chen, Pengfei Guan, and Paul Gauduchon. He would like to thank Si Li, Jeff Streets, and Valentino Tosatti for their interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongnian Huang.

Additional information

Communicated by Bennett Chow.

The research of the author is financially supported by FMJH (Fondation Mathématique Jacques Hadamard).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H. Convergence of the Calabi Flow on Toric Varieties and Related Kähler Manifolds. J Geom Anal 25, 1080–1097 (2015). https://doi.org/10.1007/s12220-013-9457-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9457-y

Keywords

Mathematics Subject Classification

Navigation