Skip to main content
Log in

Thyroid Cells Exposed to Simulated Microgravity Conditions – Comparison of the Fast Rotating Clinostat and the Random Positioning Machine

  • ORIGINAL PAPER
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The ground-based facilities 2D clinostat (CN) and Random Positioning Machine (RPM) were designed to simulate microgravity conditions on Earth. With support of the CORA-ESA-GBF program we could use both facilities to investigate the impact of simulated microgravity on normal and malignant thyroid cells. In this review we report about the current knowledge of thyroid cancer cells and normal thyrocytes grown under altered gravity conditions with a special focus on growth behaviour, changes in the gene expression pattern and protein content, as well as on altered secretion behaviour of the cells. We reviewed data obtained from normal thyrocytes and cell lines (two poorly differentiated follicular thyroid cancer cell lines FTC-133 and ML-1, as well as the normal thyroid cell lines Nthy-ori 3-1 and HTU-5). Thyroid cells cultured under conditions of simulated microgravity (RPM and CN) and in Space showed similar changes with respect to spheroid formation. In static 1g control cultures no spheroids were detectable. Changes in the regulation of cytokines are discussed to be involved in MCS (multicellular spheroids) formation. The ESA-GBF program helps the scientists to prepare future spaceflight experiments and furthermore, it might help to identify targets for drug therapy against thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albi, E., Curcio, F., Lazzarini, A., Floridi, A., Cataldi, S., Lazzarini, R., Loreti, E., Ferri, I., Ambesi-Impiombato, F. S.: How microgravity changes galectin-3 in thyroid follicles. Biomed. Res. Int. 2014, 652863 (2014)

    Article  Google Scholar 

  • Albi, E., Curcio, F., Lazzarini, A., Floridi, A., Cataldi, S., Lazzarini, R., Loreti, E., Ferri, I., Ambesi-Impiombato, F.S.: A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor. PLoS One 9, e98250 (2014b)

    Article  Google Scholar 

  • Albi, E., Curcio, F., Spelat, R., Lazzarini, A., Lazzarini, R., Cataldi, S., Loreti, E., Ferri, I., Ambesi-Impiombato, F. S.: Loss of parafollicular cells during gravitational changes (microgravity, hypergravity) and the secret effect of pleiotrophin. PLoS One 7, e48518 (2012)

    Article  Google Scholar 

  • Albi, E., Curcio, F., Spelat, R., Lazzarini, A., Lazzarini, R., Loreti, E., Ferri, I., Ambesi-Impiombato, F. S.: Observing the mouse thyroid sphingomyelin under space conditions: a case study from the MDS mission in comparison with hypergravity conditions. Astrobiology 12, 1035–41 (2012)

    Article  Google Scholar 

  • Albi, E., Ambesi-Impiombato, F.S., Peverini, M., Damaskopoulou, E., Fontanini, E., Lazzarini, R., Curcio, F., Perrella, G.: Thyrotropin receptor and membrane interactions in FRTL-5 thyroid cell strain in microgravity. Astrobiology 11, 57–64 (2011)

    Article  Google Scholar 

  • Aust, G., Scherbaum, W.A.: Expression of cytokines in the thyroid: thyrocytes as potential cytokine producers. Exp. Clin. Endocrinol. Diabetes 104, 64–67 (1996)

    Article  Google Scholar 

  • Bauerle, K.T., Schweppe, R.E., Lund, G., Kotnis, G., Deep, G., Agarwal, R., Pozdeyev, N., Wood, W.M., Haugen, B.R.: Nuclear factor κB-dependent regulation of angiogenesis, and metastasis in an in vivo model of thyroid cancer is associated with secreted interleukin-8. J. Clin. Endocrinol. Metab 99, E1436–E1444 (2014)

    Article  Google Scholar 

  • Becker, J.L., Souza, G.R.: Using space-based investigations to inform cancer research on Earth. Nat. Rev. Cancer 13, 315–327 (2013)

    Article  Google Scholar 

  • Boonstra, J.: Growth factor-induced signal transduction in adherent mammalian cells is sensitive to gravity. FASEB J. 13, 35–42 (1999)

    Google Scholar 

  • Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull. 5, 23–30 (1992)

    Google Scholar 

  • Copland, I.B., Post, M.: Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J. Cell Physiol. 10, 133–143 (2007)

    Article  Google Scholar 

  • Curcio, F., Ambesi-Impiombato, F.S., Perrella, G., Coon, H.G.: Long-term culture and functional characterization of follicular cells from adult normal human thyroids. Proc. Natl. Acad. Sci. 91, 9004–9008 (1994)

    Article  Google Scholar 

  • Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci. Tech. 25, 153–159 (2013)

    Article  Google Scholar 

  • Freed, L.E., Langer, R., Martin, I., Pellis, N.R., Vunjak-Novakovic, G.: Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 94, 13885–13890 (1997)

    Article  Google Scholar 

  • Goretzki, P.E., Frilling, A., Simon, D., Roeher, H.D.: Growth regulation of normal thyroids and thyroid tumors in man. Recent Results Cancer Res. 118, 48–63 (1990)

    Article  Google Scholar 

  • Grimm, D., Bauer, J., Hofstädter, F., Riegger, G.A., Kromer, E.P.: Characteristics of multicellular spheroids formed by primary cultures of human thyroid tumor cells. Thyroid 7, 859–865 (1997)

    Article  Google Scholar 

  • Grimm, D., Bauer, J., Kossmehl, P., Shakibaei, M., Schönberger, J., Pickenhahn, H., Schulze-Tanzil, G., Vetter, R., Eilles, C., Paul, M., Cogoli, A.: Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J. 16, 604–606 (2002)

    Google Scholar 

  • Grimm, D., Bauer, J., Infanger, M., Cogoli, A.: The use of the random positioning machine for the study of gravitational effects on signal transduction in mammalian cells. Signal Transduct. 6, 388–396 (2006)

    Article  Google Scholar 

  • Grimm, D., Bauer, J., Schoenberger, J.: Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases. Curr. Vasc. Pharmacol. 7, 347–357 (2009)

    Article  Google Scholar 

  • Grimm, D., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Ulbrich, C., Magnusson, N.E., Infanger, M., Bauer, J.: Growing tissues, in real and simulated microgravity: new methods for tissue engineering. Tissue Eng. Part B Rev. 20, 555–566 (2014)

    Article  Google Scholar 

  • Grosse, J., Wehland, M., Pietsch, J., Schulz, H., Saar, K., Hübner, N., Eilles, C., Bauer, J., Abou-El-Ardat, K., Baatout, S., Ma, X., Infanger, M., Hemmersbach, R., Grimm, D.: Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J. 26, 5124–5140 (2012)

    Article  Google Scholar 

  • Grubeck-Loebenstein, B., Buchan, G., Chantry, D., Londei, M., Turner, M., Pirich, K., Roka, R., Niederle, B., Kassal, H.: Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clin. Exp. Immunol. 77, 324–330 (1989)

    Google Scholar 

  • Häder, D., Hemmersbach, R., Lebert, M.: Gravity and the behaviour of unicellular organisms. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  • Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C., de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommend-dations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013)

    Article  Google Scholar 

  • Infanger, M., Ulbrich, C., Baatout, S., Wehland, M., Kreutz, R., Bauer, J., Grosse, J., Vadrucci, S., Cogoli, A., Derradji, H., Neefs, M., Küsters, S., Spain, M., Grimm, D.: Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J. Cell. Biochem. 101, 1439–1455 (2007)

    Article  Google Scholar 

  • Klaus, D.M., Todd, P., Schatz, A.: Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res. 21(8-9), 1315–1318 (1998)

    Article  Google Scholar 

  • Kossmehl, P., Cogoli, A., Shakibaei, M., Pickenhahn, H., Paul, M., Grimm, D.: Simulated microgravity induces programmed cell death in human thyroid carcinoma cells. J. Gravit. Physiol. 9, 295–296 (2002)

    Google Scholar 

  • Kossmehl, P, Shakibaei, M, Cogoli, A, Infanger, M, Curcio, F, Schönberger, J, Eilles, C, Bauer, J, Pickenhahn, H, Schulze-Tanzil, G, Paul, M, Grimm, D: Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 144 (9), 4172–4179 (2003)

    Article  Google Scholar 

  • Kossmehl, P., Kurth, E., Faramarzi, S., Habighorst, B., Shakibaei, M., Wehland, M., Kreutz, R., Infanger, M., Danser, A.H., Grosse, J., Paul, M., Grimm, D.: Mechanisms of apoptosis after ischemia and reperfusion: role of the renin angiotensin system. Apoptosis 11, 347–358 (2006)

    Article  Google Scholar 

  • Lemoine, N.R., Mayall, E.S., Jones, T., Sheer, D., Mcdermid, S., Kendalltaylor, P., Wynfordthomas, D.: Characterisation of human thyroid epithelial-cells immortalised in vitro by simian-virus 40-DNA transfection. Br. J. Cancer 60, 897–903 (1989)

    Article  Google Scholar 

  • Ma, X., Wehland, M., Aleshcheva, G., Hauslage, J., Wasser, K., Hemmersbach, R., Infanger, M., Bauer, J., Grimm, D.: Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells. PLoS One 8, e68140 (2013)

    Article  Google Scholar 

  • Ma, X., Pietsch, J., Wehland, M., Schulz, H., Saar, K., Hübner, N., Bauer, J., Braun, M., Schwarzwälder, A., Segerer, J., Birlem, M., Horn, A., Hemmersbach, R., Wasser, K., Grosse, J., Infanger, M., Grimm, D.: Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J. 28, 813–835 (2014)

    Article  Google Scholar 

  • Martin, A., Zhou, A., Gordon, R.E., Henderson, S.C., Schwartz, A.E., Schwartz, A.E., Friedman, E.W., Davies, T.F.: Thyroid organoid formation in simulated microgravity: influence of keratinocyte growth factor. Thyroid 10, 481–7 (2000)

    Google Scholar 

  • Masini, M. A., Albi, E., Barmo, C., Bonfiglio, T., Bruni, L., Canesi, L., Cataldi, S., Curcio, F., D’Amora, M., Ferri, I., Goto, K., Kawano, F., Lazzarini, R., Loreti, E., Nakai, N., Ohira, T., Ohira, Y., Palmero, S., Prato, P., Ricci, F., Scarabelli, L., Shibaguchi, T., Spelat, R., Strollo, F., Ambesi-Impiombato, F.S.: The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis. PLoS One 7, e35418 (2012)

    Article  Google Scholar 

  • Meli, A., Perrella, G., Curcio, F., Hemmersbach, R., Neubert, J., Impiombato, F. A.: Response to thyrotropin of normal thyroid follicular cell strain FRTL5 in hypergravity. Biochimie 81, 281–5 (1999)

    Article  Google Scholar 

  • Meli, A., Perrella, G., Curcio, F., Ambesi-Impiombato, F. S.: Response to hypogravity of normal in vitro cultured follicular cells from thyroid. Acta Astronaut 42, 465–72 (1998)

    Article  Google Scholar 

  • Pietsch, J., Kussian, R., Sickmann, A., Bauer, J., Weber, G., Nissum, M., Westphal, K., Egli, M., Grosse, J., Schönberger, J., Wildgruber, R., Infanger, M., Grimm, D.: Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics 10, 904–13 (2010)

    Google Scholar 

  • Pietsch, J., Sickmann, A., Weber, G., Bauer, J., Egli, M., Wildgruber, R., Infanger, M., Grimm, D.: A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 11, 2095–2104 (2011)

    Article  Google Scholar 

  • Pietsch, J., Sickmann, A., Bauer, J., Weber, G., Nissum, M., Westphal, K., Egli, M., Grosse, J., Schönberger, J., Eilles, C., Infanger, M., Grimm, D.: Proteome analysis of thyroid cancer cells after long-term exposure to simulated microgravity. Microgravity Sci. Technol. 23, 381–390 (2011)

    Article  Google Scholar 

  • Pietsch, J., Ma, X., Wehland, M., Aleshcheva, G., Schwarzwälder, A., Segerer, J., Birlem, M., Horn, A., Bauer, J., Infanger, M., Grimm, D.: Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 Space mission. Biomaterials 34, 7694–7670 (2013)

    Article  Google Scholar 

  • Pietsch, J., Riwaldt, S., Bauer, J., Sickmann, A., Weber, G., Grosse, J., Infanger, M., Eilles, C., Grimm, D.: Interaction of proteins identified in human thyroid cells. Int. J. Mol. Sci. 14, 1164–1178 (2013)

    Article  Google Scholar 

  • Rath, T., Billmeier, U., Waldner, M.J., Atreya, R., Neurath, M.F.: From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch. Toxicol. 89, 541–554 (2015)

    Article  Google Scholar 

  • Riwaldt, S., Pietsch, J., Sickmann, A., Bauer, J., Braun, M., Segerer, J., Schwarzwälder, A., Aleshcheva, G., Corydon, T.J., Infanger, M., Grimm, D.: Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 15, 2945–2952 (2015)

    Article  Google Scholar 

  • Rothermund, L., Kreutz, R., Kossmehl, P., Fredersdorf, S., Shakibaei, M., Schulze-Tanzil, G., Paul, M., Grimm, D.: Early onset of chondroitin sulfate and OPN expression in angiotensin II-dependent left ventricular hypertrophy. Am. J. Hypertens. 15, 644–652 (2002)

    Article  Google Scholar 

  • Schönberger, J., Bauer, J., Spruß, T., Weber, G., Chahoud, I., Eilles, C., Grimm, D.: Establishment and characterization of the follicular thyroid carcinoma cell line ML-1. J. Mol. Med. 78, 102–110 (2000)

    Article  Google Scholar 

  • Stamenković, V., Keller, G., Nesic, D., Cogoli, A., Grogan, S.P.: Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering. Tissue Eng. Part A 16, 1729–1736 (2010)

    Article  Google Scholar 

  • Svejgaard, B., Wehland, M., Ma, X., Kopp, S., Sahana, J., Warnke, E., Aleshcheva, G., Hemmersbach, R., Hauslage, J., Grosse, J., Bauer, J., Corydon, T.J., Islam, T., Infanger, M., Grimm, D.: Common effects on cancer cells exerted by a Random Positioning Machine and a 2D clinostat. PLoS One 10, e0135157 (2015)

    Article  Google Scholar 

  • Tartour, E., Pere, H., Maillere, B., Terme, M., Merillon, N., Taieb, J., Sandoval, F., Quintin-Colonna, F., Lacerda, K., Karadimou, A., Badoual, C., Tedgui, A., Fridman, W.H., Oudard, S.: Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 30, 83–95 (2011)

    Article  Google Scholar 

  • Ulbrich, C., Pietsch, J., Grosse, J., Schulz, H., Saar, K., Hübner, N., Hemmersbach, R., Braun, M., van Loon, J. J. W. A., Vagt, N., Egli, M., Richter, P., Einspanier, R.: Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol. Biochem. 28, 185–198 (2011)

    Article  Google Scholar 

  • Van Loon, J.J.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)

    Article  Google Scholar 

  • Vorselen, D., Roos, W.H., MacKintosh, F.C., Wuite, G. J., van Loon, J.J.: The role of the cytoskeleton in sensing changes in gravity by non-specialised cells. FASEB J 28, 536–547 (2014)

    Article  Google Scholar 

  • Warnke, E., Pietsch, J., Wehland, M., Bauer, J., Infanger, M., Görög, M., Hemmersbach, R., Braun, M., Ma, X., Sahana, J., Grimm, D.: Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Cell Commun. Signal 12, 32 (2014)

    Article  Google Scholar 

  • Wehland, M., Bauer, J., Infanger, M., Grimm, D.: Target-based anti-angiogenic therapy in breast cancer. Curr. Pharm. Des. 18, 4244–4257 (2012)

    Article  Google Scholar 

  • Wuest, S.L., Richard, S., Kopp, S., Grimm, D., Egli, M.: Simulated microgravity: critical review on the use of Random Positioning Machines for mammalian cell culture. BioMed Res. Int. 2015, 971474 (2015)

    Article  Google Scholar 

  • Zampetaki, A., Zhang, Z., Hu, Y., Xu, Q.: Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Rac1-p38 MAPK-NF-kappaB signaling pathways. Am. J. Physiol. Heart Circ. Physiol. 288, H2946–H2954 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Space Agency (ESA-CORA-GBF-PROJECT-2011-005 (ACRONYM DEVICE COMPARISON), ESA-CORA-GBF-PROJECT-2013-001 (ACRONYM THYROID III), D.G.) and the German Space Administration (DLR; BMWi grants 50WB1124/50WB1524; D.G.). Elisabeth Warnke is a doctoral candidate of the Helmholtz Space Life Sciences Research School, German Aerospace Center Cologne, Germany and was further funded by the German only one space Aviation and Space Medicine (DGLRM; Young Fellow Program).

Author Contributions

This review is based on data of the the ESA-CORA-GBF-PROJECT-2011-005 (ACRONYM DEVICE COMPARISON) and ESA-CORA-GBF-PROJECT-2013-001 (ACRONYM THYROID III).

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Grimm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warnke, E., Kopp, S., Wehland, M. et al. Thyroid Cells Exposed to Simulated Microgravity Conditions – Comparison of the Fast Rotating Clinostat and the Random Positioning Machine. Microgravity Sci. Technol. 28, 247–260 (2016). https://doi.org/10.1007/s12217-015-9456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9456-7

Keywords

Navigation