Skip to main content

Advertisement

Log in

How the brain deals with novelty and ambiguity: implications for neuroaesthetics

  • Interplay of the Two Cultures: Neuroaesthetics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Much of human cognition is “agent-centered,” subjective, and in that sense relative, directed at resolving ambiguity and deciding, “What is best for me”. This is very different from “veridical” cognition, directed at finding an objectively correct solution inherent in the task and independent of the agent. Understanding how the brain deals with ambiguity is central to the understanding of brain mechanisms of aesthetic judgment. It is equally important to understand how the brain deals with novelty, since in order to be aesthetically appealing the object of art must possess at least some degree of novelty and ambiguity. The frontal lobes in particular are central to agent-centered decision making and to dealing with novelty. Yet very little is available in the arsenal of cognitive paradigms used in the cognitive neuroscience research and in clinical neuropsychology test design to examine “agent-centered” decision making. The dearth of “agent-centered” cognitive paradigms severely limits our ability to understand fully the function and dysfunction of the frontal lobes. The cognitive bias task (CBT) is an agent-centered paradigm designed to fill this gap. CBT has been used as a cognitive activation task in fMRI, SPECT, and EEG, as well as in studies of normal development, addiction, dementia, focal lesions, and schizophrenia. This resulted in a range of findings, which had eluded more traditional “veridical” paradigms, and are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aihara M, Aoyagi K, Goldberg E, Nakazawa S (2003) Age shifts frontal cortical control in a cognitive bias task from right to left: part I. Neuropsychological study. Brain Dev 25:555–559

    Article  Google Scholar 

  • Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM et al (2010) The von economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214:495–517

    Article  Google Scholar 

  • Aoyagi K, Aihara M, Goldberg E, Nakazawa S (2005) Lateralization of the frontal lobe functions elicited by a cognitive bias task is a fundamental process. Lesion study. Brain Dev 27:419–423

    Article  Google Scholar 

  • Aston-Jones G (1985) Modulation of spontaneous and sensory evoked discharge of locus coeruleus neurons by behavioral state: functional implications. Contribution to EBBBS workshop. In: Schmitt P, Will B (eds) Brain plasticity, learning and memory. Plenum Press, New York

  • Aston-Jones G, Bloom FE (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibiting pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    CAS  Google Scholar 

  • Bear D, Schiff D, Saver J, Greenberg M, Freeman R (1986) Quantitative analysis of cerebral asymmetries. Fronto-occipital correlation, sexual dimorphism and association with handedness. Arch Neurol 43:589–603

    Article  Google Scholar 

  • Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 23:218–220

    Google Scholar 

  • Bever TG, Chiarello K (1974) Cerebral dominance in musicians and non-musicians. Science 185:537–539

    Article  CAS  Google Scholar 

  • Cools AR (1980) Role of neostriatal dopaminergic activity in sequencing and selective behavioral strategies: facilitation of processes involved in selecting the best strategy in a stressful situation. Behav Brain Res 1:361–378

    Article  CAS  Google Scholar 

  • Delini-Stula A, Mogilnicka E, Hann C, Dooley DJ (1984) Novelty-oriented behavior in the rat after selective damage of locus coeruleus projections by DSP-4, a new noradrinergic neurotoxin. Pharmacol Biochem Behav 20:613–618

    Article  CAS  Google Scholar 

  • Denenberg VH (1981) Hemispheric laterality in animals and the effects of early experience. Behav Brain Sci 4:1–40

    Article  Google Scholar 

  • Dos Santos Sequeira S, Woerner W, Walter C, Krueder F, Lueken U, Westerhausen R et al (2006) Handedness, dichotic-listening ear advantage, and gender effects on planum temporale asymmetry—a volumetric investigation using structural magnetic resonance imaging. Neuropsychol 44:622–636

    Article  Google Scholar 

  • Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurol 35:1731–1741

    Article  CAS  Google Scholar 

  • Foote SL, Bloom FE (1979) Activity of norepinepherin-containing locus coeruleus neurons in the unanesthetized squirrel monkey. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers, vol 1. Pergamon Press, New York, pp 625–627

    Google Scholar 

  • Galaburda AM, Lemay M, Kemper TL, Gerschwind N (1978) Right-left asymmetrics in the brain. Science 199:852–856

    Article  CAS  Google Scholar 

  • Gates A, Bradshaw JL (1977) Music perception and cerebral asymmetries. Cortex 13:390–401

    CAS  Google Scholar 

  • Geffen G, Bradshaw JL, Wallace G (1973) Interhemispheric effects on reaction time to verbal and nonverbal visual stimuli. J Exp Psychol 87:415–422

    Article  Google Scholar 

  • Glick SD, Meibach RC, Cox RD, Maayani S (1979) Multiple and interrelated functional asymmetries in rat brain. Life Sci 25:395–400

    Article  CAS  Google Scholar 

  • Glick SD, Ross DA, Hough LB (1982) Lateral asymmetry of neurotransmitter in human brain. Brain Res 234:53–63

    Article  CAS  Google Scholar 

  • Gold JM, Berman KF, Randolph C, Goldberg TE, Weinberger TR (1996) PET validation of a novel prefrontal task: delayed response alteration. Neuropsychol 10:3–10

    Article  Google Scholar 

  • Goldberg E (2009) The new executive brain: frontal lobes in a complex world. Oxford University Press, New York

    Google Scholar 

  • Goldberg E, Costa LD (1981) Hemispheric differences in the acquisition and use of descriptive systems. Brain Lang 14:144–173

    Article  CAS  Google Scholar 

  • Goldberg E, Podell K (1999) Adaptive versus veridical decision making and the frontal lobes. Conscious Cogn 8:364–377

    Article  CAS  Google Scholar 

  • Goldberg E, Podell K, Harner R, Riggio S (1994a) Cognitive bias, functional cortical geometry, and the frontal lobes: laterality, sex, and handedness. J Cogn Neurosci 6:276–296

    Article  Google Scholar 

  • Goldberg E, Podell K, Lovell M (1994b) Lateralization of frontal lobe functions and cognitive novelty. J Neuropsychiatr Clin Neurosci 6:371–378

    CAS  Google Scholar 

  • Goldberg E et al (1997) Early diagnosis of frontal lobe dementias. In: Eighth Congress of International Psychogeriatric Association. Jerusalem, Israel

  • Gordon HW, Camron A (1976) Transfer of dominance in speed of verbal recognition to visually presented stimuli from right to left hemisphere. Percept Motor Skills 42:1091–1100

    Article  Google Scholar 

  • Habib R, Nyberg L, Tulving E (2003) Hemispheric asymmetries of memory: The HERA model revisited. Trends Cogn Sci 7:241–245

    Article  Google Scholar 

  • Halpern JY (2003) Reasoning about uncertainty. MIT Press, Cambridge

    Google Scholar 

  • Hellige JB (1976) Changes in same-different laterality patterns as a function of practice and stimulus quality. Percept Psychophys 20:273–276

    Article  Google Scholar 

  • Henson R, Shallice T, Dolan R (2000) Neuroimaging evidence for dissociable forms of repetition priming. Science 287:1269–1272

    Article  CAS  Google Scholar 

  • Holtzman AM (1978) Manual reaction time to lateralized words, letters, faces and symbols: Structural and dynamic determinants of hemispheric dominance. Dissertation, City University of New York

  • Iversen SD (1977) Brain dopamine systems and behavior. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 8 drugs, neurotransmitters, and behavior. Plenum Press, New York, pp 333–384

    Chapter  Google Scholar 

  • Johnson PR (1977) Dichotically-stimulated ear differences in musicians and non-musicians. Cortex 13:385–389

    CAS  Google Scholar 

  • Kamiya Y, Aihara M, Osada M et al (2002) Electrophsyiological study of lateralization in the frontal lobes. Jpn J Cogn Neurosci 3:88–191

    Google Scholar 

  • Kempf E, Greilsamer J, Mack G, Mandel P (1974) Correlation of behavioral differences in three strains of mice with differences in brain amines. Nature 247:483–485

    Article  CAS  Google Scholar 

  • Keynes JM (1921) A treatise on probability. Macmillan, London

    Google Scholar 

  • Kittler P, Turkewitz G, Goldberg E (1989) Shifts in hemispheric advantage during familiarization with complex visual patterns. Cortex 25:27–32

    CAS  Google Scholar 

  • Klingberg et al (1999) Myelenation and organization of frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10:2817–2821

  • Kyburg HE (1974) The logical foundations of statistical inference. Reidel, Miami

    Book  Google Scholar 

  • Lemay M (1976) Morphological cerebral asymmetries of modern man, fossil man, and non-human primate. In: Harnard SR, Steklis HD, Lancaster J (eds) Origins and evolution of language and speech, vol 280. Ann NY Acad Sci, pp 394–366

  • Levi I (1974) On indeterminate probabilities. J Philos 71:391–418

    Article  Google Scholar 

  • Lezak MD, Howieson DB, Loring DW, Hannay J (2004) Neuropsychological assessment, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Lyons M, Robbins TW (1975) The action of central nervous system drugs: a general theory concerning amphetamine effects. In: Essman W, Valzelli L (eds) Current developments in psychopharmacology, vol 2. Spectrum Press, New York, pp 81–163

    Google Scholar 

  • Martin A, Wiggs CL, Weisberg J (1997) Modulation of human medial temporal lobe activity by form, meaning, and experience. Hippocampus 7:587–593

    Article  CAS  Google Scholar 

  • Martin-Iverson M, Pisa M, Chan E, Fibiger HC (1982) Enhanced neophobia but normal plasma corticosterone levels in rats with dorsal noradrenergic bundle lesion. Pharmacol Biochem Behav 17:639–642

    Article  CAS  Google Scholar 

  • Marzi CA, Berlucchi G (1977) Right visual field superiority for accuracy of recognition of famous faces in normals. Neuropsychol 15:751–756

    Article  CAS  Google Scholar 

  • Marzi CA, Brizzolara D, Rizzolatti G, Umilta C, Berlucchi G (1974) Left hemisphere superiority for recognition of well-known faces. Brain Res 66:358–359

    Article  Google Scholar 

  • Miller LK, Butler D (1980) The effect of set size on hemifield asymmetries in letter recognition. Brain Lang 9:307–314

    Article  CAS  Google Scholar 

  • Nyberg L, Cabeza R, Tulving E (1996) PET studies of encoding and retrieval: The HERA Model. Psychon Bull Rev 3:135–148

    Article  Google Scholar 

  • Oke A, Keller R, Mefford I, Adams R (1978) Lateralization of norepinephrine in human thalamus. Science 200:1411–1413

    Article  CAS  Google Scholar 

  • Oke A, Lewis R, Adams RN (1980) Hemispheric asymmetry of norepinephrine distribution in rat thalamus. Brain Res 188:269–272

    Article  CAS  Google Scholar 

  • Papcun G, Krashen S, Terbeek D, Remington R, Harshman R (1974) Is the left hemisphere specialized for speech, language and/or something else? J Acoust Soc Am 55:319–327

    Article  CAS  Google Scholar 

  • Pearlson GD, Robinson RG (1981) Suction lesions of the frontal cortex in the rat induce asymmetrical behavioral and catecholaminergic responses. Brain Res 218:233–242

    Article  CAS  Google Scholar 

  • Podell K, Lovell M, Zimmerman M, Goldberg E (1995) The cognitive bias task and lateralized frontal lobe functions in males. J Neuropsychiatr Clin Neurosci 7:491–501

    CAS  Google Scholar 

  • Reynolds DM, Jevves MA (1978) A developmental study of hemisphere specialization for recognition of faces in normal subjects. Cortex 14:511–520

    CAS  Google Scholar 

  • Rizzolatti G, Umilta C, Berlucchi G (1971) Opposite superiorities of the right and left cerebral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain 94:431–442

    Article  CAS  Google Scholar 

  • Robinson RG (1979) Differential and biochemical effects of the right and left hemispheric cerebral infarction in the rat. Science 205:707–710

    Article  CAS  Google Scholar 

  • Ross P, Turkewitz G (1982) Changes in hemispheric advantage in processing information with increasing stimulus familiarization. Cortex 18:489–499

    CAS  Google Scholar 

  • Ross-Kossak P, Turkewitz G (1984) Relationship between changes in hemispheric advantage during familiarization to faces and proficiency in facial recognition. Neuropsychol 22:471–477

    Article  CAS  Google Scholar 

  • Sbordone RJ (2010) Neuropsychological tests are poor at assessing the frontal lobes, executive functions, and neurobehavioral symptoms of traumatically brain-injured patients. Psychol Inj Law 3:25–35

    Article  Google Scholar 

  • Schobel SA et al (2009) Anterior hippocampal and anterior orbitofrontal cortical structural brain abnormalities in association with cognitive deficits in schizophrenia. Schizophr Res 114:110–118

    Article  Google Scholar 

  • Shadmher R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  Google Scholar 

  • Shimoyama H et al (2004) Context-dependent reasoning in a cognitive bias task Part II. SPECT activation study. Brain Dev 26:37–42

    Article  Google Scholar 

  • Slopsema JS, Van der Gugten J, De Bruin JPC (1982) Regional concentrations of noradrenaline and dopamine in the frontal cortex of the rat: dopaminergic innervation of the prefrontal subareas and lateralization of prefrontal dopamine. Brain Res 250:197–200

    Article  CAS  Google Scholar 

  • Sommer IE, Aleman A, Somers M, Boks MP, Kahn RS (2008) Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Res 1206:76–88

    Article  CAS  Google Scholar 

  • Sperry RW (1966) Brain bisection and consciousness. In: Eccles JC (ed) Brain conscious experience. Springer, New York, pp 298–313

    Google Scholar 

  • Springer SP, Deutsch G (2001) Left brain, right brain: perspectives from cognitive neuroscience. Worth Publishers, New York

    Google Scholar 

  • Stratta P, Daneluzzo E, Bustini M, Prosperini PL, Rossi A (1999) Schizophrenic patients use context-independent reasoning more often than context-dependent reasoning as measured by the cognitive bias task (CBT): a controlled study. Schizophr Res 37:45–51

    Article  CAS  Google Scholar 

  • Stratta P, Daneluzzo E, Bustini M, Prosperini P, Rossi A (2000) The cognitive bias task (CBT) in healthy controls: a replication study. Neuropsychiatry Neuropsychol Behav Neurol 13:279–285

    CAS  Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48

    Article  CAS  Google Scholar 

  • Umilta C, Brizzolara D, Tabossi P, Fairweather H (1985) Factors affecting face recognition in the cerebral hemispheres: familiarity and naming. In: Posner MI, Marin OS (eds) Attention and performance—VI: mechanisms of attention. Academic Press, New York

    Google Scholar 

  • Verdejo-Garcia A, Vilar-Lopez R, Perez-Garcia M, Podell K, Goldberg E (2006) Altered adaptive but not veridical decision-making in substance dependent individuals. J Int Neuropsychol Soc 12:90–99

    Google Scholar 

  • Vogeley K et al (2003) Recruitment of the left prefrontal cortex in preference-based decisions in males (fMRI study). In: Annual Meeting of the Human Brain Mapping Organization. New York, NY

  • Watabe K, Nakai K, Kasamatsu T (1982) Visual afferent to norepinepherine-containing neurons in cat locus coeruleus. Exp Brain Res 48:66–80

    Article  CAS  Google Scholar 

  • Weinberger DR, Luchins DJ, Morihisa J, Wyatt RJ (1982) Asymmetrical volumes of the right and left frontal and occipital regions of the human brain. Ann Neurol 11:97–100

    Article  CAS  Google Scholar 

  • Wertheim N, Botez MI (1961) Receptive amusia: a clinical analysis. Brain 84:19–30

    Article  CAS  Google Scholar 

  • Wolf RC, Hose A, Frasch K, Walter H, Vasic N (2008) Volumetric abnormalities associated with cognitive deficits in patients with schizophrenia. Eur Psychiatry 23:541–548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Podell.

Additional information

This contribution is the written, peer reviewed version of a paper presented at the Golgi Symposium on Perspectives in Neuroaesthetics, held at the Accademia Nazionale dei Lincei in Rome on June 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, E., Funk, B.A. & Podell, K. How the brain deals with novelty and ambiguity: implications for neuroaesthetics. Rend. Fis. Acc. Lincei 23, 227–238 (2012). https://doi.org/10.1007/s12210-012-0186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-012-0186-0

Keywords

Navigation