Skip to main content

Advertisement

Log in

Climate reconstructions and monitoring in the Mediterranean Sea: A review on some recently discovered high-resolution marine archives

  • Published:
RENDICONTI LINCEI Aims and scope Submit manuscript

Abstract

Palaeoclimate records are important tools for understanding climate modifications and contextualizing recent anthropogenic perturbations in climate change relative to natural variability in the Earthclimate system.

Moreover, time-series proxy records of the main physical and chemical parameters in marine and continental environments are increasingly used for testing climate models in order to ascertain the reliability of projections for future scenarios in our greenhouse modified Earth.

In order to account for the limited number of continuous instrumental measurements of climatic variables in the past, such as sea surface temperature (SST), salinity (SSS), sea-level fluctuations and water chemistry, a complementary approach is the examination of geochemical tracers (i.e. trace elements and stable isotopes) in well-dated natural marine archives.

Recently, the Mediterranean Sea has been the focus of a number of studies where new high resolution climate archives have been investigated utilizing proxies for sea surface temperature, salinity,marine chemistry, and ocean circulation, different to those available for tropical regions. In particular, vermetids (Dendropoma petraeum), non-tropical zooxanthellate corals (Cladocora caespitosa) and cold-water corals (Desmophyllum dianthus, Lophelia pertusa and Madrepora oculata) have been studied by conventional and advanced analytical techniques (e.g., laser ablation ICP-MS, MC-ICP-MS, synchrotron X-ray fluorescence) and have been successfully used as high-resolution palaeoenvironmental proxies. Vermetid reefs have the potential to yield valuable information on past sea-level changes and SST, through the combination of stable isotopes and radiocarbon dating. The trace element concentration, in combination with U-series and radiocarbon dating, of the skeletal aragonite of the Mediterranean zooxanthellate coral Cladocora caespitosa, and of the coldwater corals Desmophyllum dianthus and Lophelia pertusa, has been successfully demonstrated to be a valid high-resolution SST archive, and a seawater chemistry and ocean circulation proxy, respectively. Here we present a review of our research over the last few years, aiming for the establishment of new natural marine archives collected from various sites of the Mediterranean Sea, reporting on our methodological approaches and main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adkins JF, Cheng H, Boyle EA, Druffel ERM, Edwards LRL (1998) Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280: 725–728

    Article  CAS  Google Scholar 

  2. Adkins JF, Griffin S, Kashgarian M, Cheng H, Druffel ERM, Boyle EA, Edwards LRL, Shen CC (2002) Radiocarbon dating of deep-sea corals. Radiocarbon 44: 567–580

    CAS  Google Scholar 

  3. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochimica et Cosmochimica Acta 67: 1129–1143

    Article  CAS  Google Scholar 

  4. Adkins JF, Henderson GM, Wang S-L, O’shea A, Mokadem, F (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth and Planetary Science Letters 227: 481–490

    Article  CAS  Google Scholar 

  5. Alibert C, McCulloch MT (1997) Strontium/Calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and onitoring of ENSO. Paleoceanography 12: 345–363

    Article  Google Scholar 

  6. Angulo RJ, Giannini PCF, Suguio K, Pessenda LCR (1999) Relative sea-level changes in the last 5500 years in southern Brazil (Laguna-Imbituba region, Santa Catarina State) based on vermetid 14C ages.Marine Geology 159: 323–339

    Google Scholar 

  7. Antonioli F, Chemello R, Improta S, Riggio S (1999) Dendropoma lower intertidal reef formations and their palaeoclimatological significance, NW Sicily. Marine Geology 161: 155–170

    Article  Google Scholar 

  8. Antonioli F, Silenzi S, Frisia, S (2001) Tyrrhenian Holocene palaeoclimate trends from spelean serpulids. Quaternary Science Reviews 20: 1661–1670

    Article  Google Scholar 

  9. Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F (1996) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382: 241–244

    Article  CAS  Google Scholar 

  10. Beck JW, Edwards RL, Ito E, Taylor FW, Récy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257: 644–647

    Article  CAS  Google Scholar 

  11. Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the pre-industrial European climate. Climate Dynamics 27: 743–760

    Article  Google Scholar 

  12. Bivona-Bernardi A (1832) Caratteri dei vermeti desunti da cinque specie che abitano nel mare di Palermo. Effemeridi scientifiche e letterarie per la Sicilia, 1, 2, 3

    Google Scholar 

  13. Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302: 404–405

    Article  CAS  Google Scholar 

  14. Broecker WS (2001) Was the medieval warm period global? Science 291: 1497–1499

    Article  CAS  Google Scholar 

  15. Chemello R, Pandolfo A, Riggio S (1990) Le biocostruzioni a Molluschi Vermetidi nella Sicilia Nord-Occidentale. Atti 53 Congresso UZI, Palermo.

  16. Cramp A, O’sullivan G (1999) Neogene sapropels in the Mediterranean: a review. Marine Geology 153: 11–28

    Article  Google Scholar 

  17. Delongeville R, Laborel J, Pirazzoli P, Sanlaville P, Arnold M, Bernier P, Evin J, Montaggioni L (1993) Les variations récentes de la ligne de rivage sur le littoral Syrien. Quaternaire 4: 45–53

    Google Scholar 

  18. Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR, Taylor KE, Wehner MF, Thompson SL (2003) High-resolution simulations of global climate, part 1: present climate. Climate Dynamics 21: 371–390

    Article  Google Scholar 

  19. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. GSA Bulletin 64: 1315–1325

    Article  CAS  Google Scholar 

  20. Esper EJC (1794) Fortsetzungen der Pflanzenthiere. Nürnberg. Vol. 1,part 1–2, pp. 64

    Google Scholar 

  21. Fabricius JC (1779) Reise nach Norwegen mit Bemerkungen aus der Naturhistorie und Oekonomie. Hamburg, Reise Norwegen

    Google Scholar 

  22. Focke JW (1977) The effect of a potentially reef-building vermetid community on an eroding limestone coast, Curacao, Netherland Antilles. Proceedings of the 3rd International Coral Reef Symposium, Miami, Vol. 1 239–245

    Google Scholar 

  23. Freiwald A (1998) Geobiology of Lophelia pertusa (Scleractinia) reefs in the north Atlantic. Habilitation thesis, Univ. Bremen pp. 116

  24. Freiwald A (2002) Reef-Forming Cold-Water Corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds.) Ocean Margin Systems, Springer: Berlin-Heidelberg 365–385

    Google Scholar 

  25. Freiwald A, Henrich R, Paetzold J. (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West-Finnmark, northern-Norway. SEPM, Special Publication 56: 141–161

    Google Scholar 

  26. Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochimica et Cosmochimica Acta 70: 4617–4634

    Article  CAS  Google Scholar 

  27. Govindasamy B, Duffy PB, Coquard J (2003) High-resolution simulations of global climate, part 2: effects of increasing greenhouse cases. Climate Dynamics 21: 391–404

    Article  Google Scholar 

  28. Grottoli AG (1999) Variability of stable isotopes and maximum linear extension in reefcoral skeletons at Kaneohe Bay, Hawaii. Marine Biology 135: 437–449

    Article  Google Scholar 

  29. Hadfield MG, Kay EA, Gillette MU, Lloyd MC (1972) The Vermetidae (Mollusca Gastropoda) of the Hawaiian Islands. Marine Biology 12: 81–98

    Google Scholar 

  30. Hunt BG (2006) The Medieval Warm Period, the Little Ice Age and simulated climatic variability. Climate Dynamics 27: 677–694 DOI 10.1007/s00382-006-0153-5.

    Article  Google Scholar 

  31. Jones B, Hunter I (1995) Vermetid buildups from Grand Cayman, British West Indies. Journal of Coastal Research 4: 973–983

    Google Scholar 

  32. Keigwin LD (1996) The Little Ice Age and medieval warm period in the Sargasso Sea. Science 274: 1504–1508

    Article  CAS  Google Scholar 

  33. Kemp M, Laborel J (1968) Formations de vermets et d’algues calcaires sur les cotes du Bresil. Rec. Trav. Stat. Mar. Endoume 43, 59: 9–23

    Google Scholar 

  34. Kružiæ P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22: 536

    Article  Google Scholar 

  35. Kûhlmann DHH (1996) Preliminary report on Holocene submarine accumulation of Cladocora caespitosa (L., 1767) in the Mediterranean. Göttinger Arb Geol. Pälont. Sb2: 65–69

    Google Scholar 

  36. Laborel J (1987) Marine biogenic constructions in the Mediterranean, a review. Rep. Sci. Par natl. Port-Cros 13: 97–126

    Google Scholar 

  37. Laborel J, Delibrias G (1976) Niveaux marins récents à vermetidae du littoral ouest Africain. Assoc. Senegal. Etude Quat. Afr. Bull. 47: 97–110

    Google Scholar 

  38. Laborel J, Laborel-Deguen F (1996) Biological indicators of Holocene sea level and climatic variations on rocky coasts of tropical and subtropical regions. Quaternary International 31: 53–60

    Article  Google Scholar 

  39. Lazier AV, Smith JE, Risk MJ, Schwarcz HP (1999) The skeletal structure ofDesmophyllum cristagalli: the use of deep-water corals in sclerochronology. Lethaia 32: 119–130

    Google Scholar 

  40. Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Regnum Animale. 10th ed. W. Engelmann, Lipsiae

    Google Scholar 

  41. López Correa M, Freiwald A, Taviani M (2005a). Stable oxygen and carbon isotope composition of extant North Atlantic Acesta spp. (Bivalvia: Limidae), provide high-resolution environmental archives for cold-water coral habitats. Third International Symposium on Deep-Sea Corals, Miami, November 2005

  42. López Correa M, Freiwald A, Hall-Spencer J, Taviani M (2005b). Distribution and habitats of Acesta excavata (Bivalvia: Limidae), with new data on its shell ultrastructure. In: Freiwald A, Roberts M, (eds.) Deep-water Corals and Ecosystems, Springer-Verlag, 173–205

  43. López Correa M, Montagna P, Vendrell B, McCulloch M, Taviani M (submitted). Stable isotopes (δ 18O, δ 13C), trace and minor element compositions of Last Glacial to Recent scleractinians and bivalves at Santa Maria di Leuca deep-water coral province, Ionian Sea. Deep-Sea Research, submitted

  44. McCulloch M, Montagna P, Försterra G, Mortimer G, Häussermann V, Mazzoli C (2005) Uranium-series dating and growth rates of the cold-water coral Desmophyllum dianthus from the Chilean Fjords. Program and Abstract Book of the Third International Symposium on Deep-Sea Corals, Miami, pp. 191

  45. Meibom A, Yurimoto H, Cuif J-P, Domart-Coulon I, Houlbreque F, Constantz B, Dauphin Y, Tambutté E, Tambutté S, Allemand D, Wooden J, Dunbar R (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophysical Research Letters 33, L11608, DOI:10.1029/2006GL025968

    Article  CAS  Google Scholar 

  46. Metalpa RR, Peirano A, Morri C, Bianchi CN (1999) Coral calcification rates in the Mediterranean Scleractinian coral Cladocora caespitosa (L., 1767). Atti Associazione Italiana Oceanologia e Limnologia 13,1, 291–299

    Google Scholar 

  47. Mikkelsen N, Erlenkenkeuser E, Killingley JS, Berger WH (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11: 163–171

    Article  Google Scholar 

  48. Milne-Edwards H, Haime J (1848) Recherches sur les Polypiers, deuxième mémoire, Monographie des Turbinolides. Annales des Sciences Naturelles, Zoologie 9: 211–344

    Google Scholar 

  49. Montagna P, McCulloch M, Taviani M, Remia A, Mazzoli C (2004). Laser ablation systematics in deep-water corals (Desmophyllum dianthus) from the Mediterranean Sea and the Pacific Ocean. 8th International Conference on Paleoceanography, 5–10 September 2004, Biarritz (France)

  50. Montagna P, McCulloch M, Taviani M, Remia A, Rouse G (2005) High-resolution trace and minor element compositions in deep-water solitary scleractinian corals (Desmophyllum dianthus) from the Mediterranean Sea and the Great Australian Bight. In: Freiwald A, Roberts M (eds.) Deep-water Corals and Ecosystems. Springer-Verlag: 1109–1126

  51. Montagna P, McCulloch M, Taviani M, Mazzoli C, Vendrell B (2006) Phosphorus in coldwater corals as a proxy for seawater nutrient chemistry. Science 312: 1788–1791

    Article  CAS  Google Scholar 

  52. Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean Sea: high-resolution (∼ weekly) trace element systematics. Quaternary Science Review 26: 441–462

    Article  Google Scholar 

  53. Monterosato MTA (1892) Monografia dei vermeti del Mediterraneo. Bull. Soc. Malacol. Ital. 17: 7–48

    Google Scholar 

  54. Morri C, Peirano A, Bianchi CN, Sassarini M (1994) Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the Eastern Ligurian Sea (NW Mediterranean). Biologia Marina Mediterranea 1: 371–372

    Google Scholar 

  55. Palmer TN, Shutts GJ, Hagedorn R, Doblas-Reyes FJ, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Annual Review of Earth and Planetary Science 33: 163–193

    Article  CAS  Google Scholar 

  56. Parrilla G, Kinder TH (1987) Oceanografıa fısica del mar de Alboran. Boletın del Instituto Espanol de Oceanografıa 4: 133–165

    Google Scholar 

  57. Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora caespitosa (Anthozoa, Scleractinian) as a bioherm builder in the Mediterranean Sea. Memorie Descrittive Carta Geologica d’Italia 52: 59–74

    Google Scholar 

  58. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Marine Ecology Progress Series 185: 195–201

    Article  Google Scholar 

  59. Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) the Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Global and Planetary Change 40: 195–200

    Article  Google Scholar 

  60. Pirazzoli PA, Montaggioni LF (1989) Crustal blockmovements from Holocene shorelines: Rhodes Island, Greece. Tectonophysics 170: 89–114

    Article  Google Scholar 

  61. Pirazzoli PA, Laborel J, Stiros SC (1996) Earthquake clustering in the eastern Mediterranean during historical times. Journal of Geophysical Research 101: 6083–6098

    Article  Google Scholar 

  62. Remia A, Taviani M (2005) Shallow-buried Pleistocene Madrepora-coral mounds on a muddy continental slope, Tuscan Archipelago, NE Tyrrhenian Sea. Facies 50: 419–425

    Article  Google Scholar 

  63. Rollion-Bard C, Blamart D, Cuif JP, Juillet-Leclerc A (2003) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22: 405–415

    Article  Google Scholar 

  64. Sabelli B, Giannuzzi-Savelli R, Bedulli D (1990) Catalogo annotato dei molluschi marini del Mediterraneo. Vol. 1. Libreria Naturalistica Bolognese, Bolgona. pp. 348

    Google Scholar 

  65. Safriel U (1966) Recent vermetid formation on the Mediterranean shore of Israel. Proc. Malacol. Soc. London 37: 27–34

    Google Scholar 

  66. Safriel U (1974) Vermetid gastropods and intertidal reefs in Israel and Bermuda. Science 186: 1113–1115

    Article  CAS  Google Scholar 

  67. Schiaparelli S, Alberelli G, Cattaneo-Vietti R (2006) Phenotypic plasticity of Vermetidae suspensionfeeding: a potential bias in their use as Biological Sea-Level Indicators. Marine Ecology 27: 44–53

    Article  Google Scholar 

  68. Schiller C (1993) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinian) in the Bay of Piran (Adriatic Sea): I. Distribution and biometry. Marine Ecology 14: 205–219

    Article  Google Scholar 

  69. Schneider T (2006) The general circulation of the atmosphere. Annual Review of Earth and Planetary Science 34: 655–688

    Article  CAS  Google Scholar 

  70. Schröder-Ritzrau A, Mangini A, Lomitschka M (2003) Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LGM/Holocene transition. Earth and Planetary Science Letters 216: 399–410

    Article  CAS  Google Scholar 

  71. Silenzi S, Antonioli F, Chemello R (2004) A new marker for sea surface temperature trend during the last centuries in temperate areas: vermetid reef. Global and Planetary Change 40/1–2: 105–114

    Article  Google Scholar 

  72. Silenzi S, Bard E, Montagna P, Antonioli F (2005) Isotopic and elemental records in a nontropical coral (Cladocora caespitosa): Discovery of a new high-resolution climate archive for the Mediterranean Sea. Global and Planetary Change 49: 94–120

    Article  Google Scholar 

  73. Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High-resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochimica et Cosmochimica Acta 62: 1889–1901

    Article  CAS  Google Scholar 

  74. Sinclair DJ, Williams B, Risk M (2006) A biological origin for climate signals in corals-trace element “vital effects” are ubiquitous in scleractinian coral skeletons. Geophysical Research Letters 33, L17707, DOI:10.1029/2006GL027183

    Article  CAS  Google Scholar 

  75. Smith SV, Buddemeier RV, Redalje RC, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204: 404–407

    Article  CAS  Google Scholar 

  76. Smith JE, Risk MJ, Schwarcz HP, McConnaughey TA (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386: 818–820

    Article  CAS  Google Scholar 

  77. Smith JE, Schwarcz HP, Risk MJ, McConnaughey TA, Keller N (2000) Paleotemperatures from deep-sea corals: overcoming “vital effects”. Palaios 15: 25–32

    Google Scholar 

  78. Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model, Climate Dynamics 27: 851–879

    Article  Google Scholar 

  79. Stephenson TA, Stephenson A (1954) The Bermuda Islands. Endeavour 50: 72–80

    Google Scholar 

  80. Laborel J, Laborel-Deguen F, Papageorgiou S, Evin J, Pirazzoli PA, Stiros SC, (2000) Seismic coastal uplift in a region of subsidence: Holocene raised shorelines of Samos Island, Aegean Sea, Greece. Marine Geology 170: 41–58

    Article  Google Scholar 

  81. Taviani, M (2002) The Mediterranean benthos from Late Miocene up to Present: ten million years of dramatic climatic and geological vicissitudes. Biologia Marina Mediterranea 9: 445–463

    Google Scholar 

  82. Taviani M, Corselli C, Freiwald A, Malinverno E, Mastrototaro F, Remia A, Savini A, Tursi, A (2005a). First geo-marine survey of living cold-water Lophelia reefs in the Ionian Sea (Mediterranean basin). Facies 50: 409–417

    Article  Google Scholar 

  83. Taviani M, Freiwald A, Zibrowius H (2005b) Deep-coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts M (eds.) Deep-water Corals and Ecosystems, Springer-Verlag: 137–156

  84. Triolo R, Gorgoni C, Lo Celso F, Baron M, Pallante P, Schwahn D, Kentzinger E, Riso A, Ruffo L (2003) Application of the USANS Technique in Natural Sciences and Archaeometry. Abstracts of Scientific Presentations of the first workshop of the International Consortium on Ultra-Small-Angle Scattering (IConUSAS), Oak Ridge pp. 27

  85. Van Andel T, Laborel J (1964) Recent high relative sea level stand near Recife, Brazil. Science 145: 580–581

    Article  Google Scholar 

  86. Weber JN, Woodhead PMJ (1972) Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research 77: 463–473

    Article  CAS  Google Scholar 

  87. Wellington GM, Dunbar RB (1995) Stable isotopic signatures of El Niño-Southern Oscillation events in the eastern tropical Pacific reef corals. Coral Reefs 14: 5–25

    Article  Google Scholar 

  88. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mém. Inst. Océanogr. 11: 1–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Montagna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montagna, P., Silenzi, S., Devoti, S. et al. Climate reconstructions and monitoring in the Mediterranean Sea: A review on some recently discovered high-resolution marine archives. Rend. Fis. Acc. Lincei 19, 121–140 (2008). https://doi.org/10.1007/s12210-008-0007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-008-0007-7

Keywords

Subject codes

Navigation