Skip to main content
Log in

Centrifugal compressor tip clearance and impeller flow

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Compressors consume a considerable portion of the electricity used in the industrial sector. Hence, improvements in compressor efficiency lead to energy savings and reduce environmental impacts. The efficiency of an unshrouded centrifugal compressor suffers from leakage flow over the blade tips. The effect of tip leakage flow on the passage flow differs between the full and splitter blade passages. In this study, the differences in the flow fields between the full and splitter blade passages were studied numerically in detail. An industrial high-speed compressor with a design pressure ratio of 1.78 was modelled. Numerical studies were conducted with six different tip clearances and three different diffuser widths. The results show that increasing tip clearance considerably increases the reversed flow into the impeller with an unpinched diffuser. The reversed flow then partly mixes into the flow in the same blade passage it entered the impeller and the rest migrates over the blade, mixing with the tip clearance flow. Furthermore, as the reversed and clearance flow mix into the wake, the wake is weakened. As pinch reduces both the reversed flow and clearance flow, the passage wakes are stronger with pinches. However, the pinch is beneficial as the losses at the impeller outlet decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. de Almeida, P. Fonseca, H. Falkner and P. Bertoldi, Market transformation of energy-efficient motor technologies in the EU, Energy Policy, 31 (2003) 563–575.

    Article  Google Scholar 

  2. R. Saidur, N. Rahim and M. Hasnuzzaman, A review on compressed-air energy use and energy savings, Renewable and Sustainable Energy Reviews, 14 (2010) 1135–1153.

    Article  Google Scholar 

  3. J. Viholainen, K. Grönman, A. Jaatinen-Värri, A. Grönman, P. Ukkonen and M. Luoranen, Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment, Energy Conversion and Management, 101 (2015) 336–342.

    Article  Google Scholar 

  4. R. Pampreen, Small turbomachinery compressor and fan aerodynamics, J. of Engineering for Gas Turbines and Power, 95 (1973) 251–256.

    Article  Google Scholar 

  5. G. Eisenlohr and H. Chladek, Thermal tip clearance control for centrifugal compressor of an APU engine, J. of Turbomachinery, 116 (1994) 629–634.

    Article  Google Scholar 

  6. D. Palmer and W. Waterman, Design and development of an advanced two-stage centrifugal compressor, J. of Turbomachinery, 117 (1995) 205–212.

    Article  Google Scholar 

  7. T. Turunen-Saaresti and A. Jaatinen, Influence of the different design parameters to the centrifugal compressor tip clearance loss, J. of Turbomachinery, 135 (2013) 011017.

    Article  Google Scholar 

  8. J. Backman, A. Reunanen, J. Saari, T. Turunen-Saaresti, P. Sallinen and H. Esa, Effects of impeller tip clearance on centrifugal compressor efficiency, Proceedings of ASME Turbo Expo, Montreal, Canada, May 14-17 (2007) paper no. GT2007-28200.

    Google Scholar 

  9. J. Denton, Loss mechanisms in turbomachines, J. of Turbomachinery, 115 (1993) 621–656.

    Article  Google Scholar 

  10. M. Schleer, S. J. Song and R. S. Abhari, Clearance effects on the onset of instability in a centrifugal compressor, J. of Turbomachinery, 130 (2008) 031002.

    Article  Google Scholar 

  11. M. Zangeneh, M. Schleer, F. Pløger, S. S. Hong, C. Roduner, B. Ribi and R. S. Abhari, Investigation of an inversely designed centrifugal compressor stage-Part I: Design and numerical verification, J. of Turbomachinery, 126 (2004) 73–81.

    Article  Google Scholar 

  12. M. Ishida, Y. Senoo and H. Ueki, Secondary flow due to the tip clearance at the exit of centrifugal impellers, J. of Turbomachinery, 112 (1990) 19–24.

    Article  Google Scholar 

  13. N. Buffaz and I. Trébinjac, Detailed analysis of the flow in the inducer of a transonic centrifugal compressor, J. of Thermal Science, 21 (2002) 1–12.

    Article  Google Scholar 

  14. M. Schleer and R. S. Abhari, Clearance effects on the evolution of the flow in the vaneless diffuser of a centrifugal compressor at part load condition, J. of Turbomachinery, 130 (2008) 031009.

    Article  Google Scholar 

  15. M. Schleer, S. S. Hong, M. Zangeneh, C. Roduner, B. Ribi, F. Pløger and R. S. Abhari, Investigation of an inversely designed centrifugal compressor stage -Part II: Experimental investigations, J. of Turbomachinery, 126 (2004) 82–90.

    Article  Google Scholar 

  16. H.-L. Wang, G. Xi, J.-Y. Li and M.-L. Yuan, Effect of the tip clearance variation on the performance of a centrifugal compressor with considering impeller deformation, Proceedings of the Institution of Mechanical Engineers, Part A: J. of Power and Energy, 225 (2011) 1143–1155.

    Google Scholar 

  17. A. Jaatinen-Värri, A. Grönman, T. Turunen-Saaresti and J. Backman, Investigation of the stage performance and flow fields in centrifugal compressor with a vaneless diffuser, International J. of Rotating Machinery (2014) 139153.

    Google Scholar 

  18. Y. Bousquet, X. Carbonneau, I. Trébinjac, D. Dufour and M. Roumeas, Description of the unsteady flow pattern from peak efficiency to near surge in a subsonic centrifugal compressor stage, Proceedings of the 10th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, Lappeenranta, Finland, April (2013) 15–19.

    Google Scholar 

  19. J. Tang, T. Turunen-Saaresti, A. Reunanen, J. Honkatukia and J. Larjola, Numerical investigation of the effect of tip clearance to the performance of a small centrifugal compressor, Proceedings of ASME Turbo Expo, Barcelona, Spain, May 8-11 (2006) paper no. GT2006-90893.

    Google Scholar 

  20. A. Jaatinen, A. Grönman, T. Turunen-Saaresti and P. Röyttä, Effect of vaneless diffuser width on the overall performance of a centrifugal compressor, Proceedings of the Institution of Mechanical Engineers, Part A: J. of Power and Energy, 225 (2011) 665–673.

    Google Scholar 

  21. A. Jaatinen, T. Turunen-Saaresti, A. Grönman, P. Röyttä and J. Backman, Experimental study of the effect of the tip clearance to the diffuser flow field and stage performance of a centrifugal compressor, Proceedings of ASME Turbo Expo, Copenhagen, Denmark, June 11-15 (2012) paper no. GT2012-68445.

    Google Scholar 

  22. A. Jaatinen-Värri, P. Röyttä, T. Turunen-Saaresti and A. Grönman, Experimental study of centrifugal compressor vaneless diffuser width, J. of Mechanical Science and Technology, 27 (2013) 1011–1020.

    Article  Google Scholar 

  23. A. Jaatinen-Värri, T. Turunen-Saaresti, R. Röyttä, A. Grönman and J. Backman, Experimental study of centrifugal compressor tip clearance and vaneless diffuser flow fields, Proceedings of the Institution of Mechanical Engineers, Part A: J. of Power and Energy, 227 (2013) 885–895.

    Google Scholar 

  24. A. Jaatinen-Värri, T. Turunen-Saaresti, A. Grönman, J. Backman and J. Tiainen, Numerical investigation of centrifugal compressor tip clearance, Proceedings of ASME Turbo Expo, Montreal Canada, June 15-19 (2015) paper no. GT2015-43199.

    Google Scholar 

  25. J. Oh and G. L. Agrawal, Numerical investigation of low solidity vaned diffuser performance in a high-pressure centrifugal compressor, Part I: Influence of Vane Solidity, Proceedings of ASME Turbo Expo, May 14-17, Montreal, Canada (2007) paper no. GT2007-27260.

    Google Scholar 

  26. J. Oh, C. W. Buckley and G. L. Agrawal, Numerical investigation of low solidity vaned diffuser performance in a highpressure centrifugal compressor, Part II: Influence of vane stagger, Proceedings of ASME Turbo Expo, June 9-13, Berlin, Germany (2008) paper no. GT2008-50178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahti Jaatinen-Värri.

Additional information

Recommended by Associate Editor Weon Gyu Shin

Ahti Jaatinen-Värri is an Associate Professor at the Laboratory of Fluid Dynamics, in Lappeenranta University of Technology, Finland. His main areas of interest are internal flows in various high-speed turbomachinery, especially centrifugal compressor aerodynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaatinen-Värri, A., Tiainen, J., Turunen-Saaresti, T. et al. Centrifugal compressor tip clearance and impeller flow. J Mech Sci Technol 30, 5029–5040 (2016). https://doi.org/10.1007/s12206-016-1022-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-1022-8

Keywords

Navigation