Skip to main content
Log in

Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The success of an implant depends upon surface characteristics like roughness, topography, chemistry and hardness. The fabrication of a hard surface in combination with micron-, submicron- and nano-scale surface roughness is a great challenge for biomanufacturing industries. The surface microhardness (MH) needs to be maximized while controlling the Surface roughness (SR). The present research is the first study in which the application of Non-dominated sorting genetic algorithm (NSGA)-II coupled with Taguchi based Response surface methodology (RSM) is used to predict the optimal conditions of Powder mixed electric discharge machining (PMEDM) parameters to fabricate the biocompatible surface on β-phase Ti alloy. Batch vial tests were first carried out in accordance with the L25 orthogonal array. ANOVA analysis gave the significant influencing factors and then mathematical models were developed between input parameters and output responses like SR and MH using Taguchi based RSM technique. These models were then optimized using NSGA-II to obtain a set of Pareto-optimal solutions. From the series of multiple solutions, the best optimal condition to achieve required low SR and high MH was determined, which are 13 A peak current, 5 μs pulse duration, 8% duty cycle (longer pulse-interval) and 8 g/l silicon powder concentration for achieving a required low SR and high MH. The MH considerably increased about 184% compared to the base material, and about 1.02 μm SR can be achieved in combination with micron-, submicron- and nano-scale surface features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Niinomi, M. Nakai and J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater, 8 (2012) 3888–3903.

    Article  Google Scholar 

  2. M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants-A review, Prog. Mater. Sci., 54 (3) (2009) 397–425.

    Article  Google Scholar 

  3. R. A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K. H. Sandhage and B. D. Boyana, The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation, Biomaterials, 32 (2011) 3395–3403.

    Article  Google Scholar 

  4. C. Prakash, H. K. Kansal, B. S. Pabla and S. Puri, On the influence of nanoporous layer fabricated by PMEDM on ß-Ti implant: Biological and computational evaluation of bone-implant interface, 5th International Conference of Materials Processing and Characterization, Hyderabad (2016) 1–9.

    Google Scholar 

  5. X. B. Liu, X. J. Meng, H. Q. Liu, G. L. Shi, S. H. Wu, C. F. Sun, M. D. Wang and L. H. Qi, Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy, Mater. Des., 55 (2014) 404–409.

    Article  Google Scholar 

  6. X. Liu, P. K. Chu and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R., 47 (2004) 49–121.

    Article  Google Scholar 

  7. C. Prakash, H. K. Kansal, B. S. Pabla, S. Puri and A. Aggarwal, Electric discharge machining-a potential choice for surface modification of metallic implants for orthopedics applications: A review, Proc. I. Mech. Engg, Part B: J. Eng. Manuf., 230 (2016) 331–353.

    Google Scholar 

  8. P. W. Peng, K. L. Ou, H. C. Lin, Y. N. Pan and C. H. Wang, Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium, J. Alloy. Comp., 492 (1-2) (2010) 625–630.

    Article  Google Scholar 

  9. T. S. Yang, M. S. Huang, M. S. Wang, M. H. Lin, M. Y. Tsai and P. Y. Wang, Effect of electrical discharging on formation of nanoporous biocompatible layer on Ti-6Al-4V alloys, Implant Dentistry, 22 (4) (2013) 374–9.

    Article  Google Scholar 

  10. W. F. Lee, T. S. Yang, Y. C. Wu and P. W. Peng, Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response, J. Exp. Clin. Med., 5 (3) (2013) 92–96.

    Article  Google Scholar 

  11. T. C. Bin, L. D. Xin, W. Zhan and G. Yang, Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications, Appl. Surf. Sci., 257 (15) (2011) 6364–6371.

    Article  Google Scholar 

  12. P. Harcuba, L. Bacakova, J. Strasky, M. Bacakova, K. Novotna and M. Janecek, Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics, J. Mech. Behav. Biomed. Mater., 7 (2012) 96–105.

    Article  Google Scholar 

  13. H. Kumar and J. P. Davim, Role of powder in the machining of Al-10%Sicp metal matrix composites by powder mixed electric discharge machining, J. Compos. Mater., 45 (2) (2010) 133–151.

    Article  Google Scholar 

  14. H. K. Kansal, S. Singh and P. Kumar, Effect of graphite powder mixed EDM on machining rate of AISI D2 die steel, J. Manuf. Process., 9 (1) (2007) 13–22.

    Article  Google Scholar 

  15. B. H. Yan, H. C. Tsai and F. Y. Huang, The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium, Int. J. Mach. Tools. Manuf., 45 (2) (2005) 194–200.

    Article  Google Scholar 

  16. M. B. Ndaliman, A. A. Khan and M. Y. Ali, Influence of electrical discharge machining process parameters on surface micro-hardness of titanium alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 227 (2013) 460–464.

    Article  Google Scholar 

  17. Z. M. Zain, M. B. Ndaliman, A. A. Khan and M. Y. Ali, Improving micro-hardness of stainless steel through powder-mixed electrical discharge machining, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2014) DOI: 10.1177/0954406214530872.

    Google Scholar 

  18. P. Janmanee and A. Muttamara, Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension, Appl. Surf. Sci., 258 (19) (2012) 7255–7265.

    Article  Google Scholar 

  19. I. Arun, M. Duraiselvam, V. Senthilkumar, R. Narayanasamy and V. Anandakrishana, Synthesis of electric discharge alloyed nickel-tungsten coating on tool steel and its tribological studies, Mater. Des., 63 (2014) 257–262.

    Article  Google Scholar 

  20. C. Prakash, H. K. Kansal, B. S. Pabla and S. Puri, Proceßsing and characterization of novel biomimetic nanoporous bioceramic surface on ß-Ti Implant by powder mixed electric discharge machining, J. Mater. Eng. Perform., 24 (2015) 3622–3633.

    Article  Google Scholar 

  21. C. Prakash, H. K. Kansal, B. S. Pabla and S. Puri, Potential of powder mixed electric discharge machining to enhance the wear and tribological performance of ß-Ti implant for orthopedic applications, J. Nanoeng Nanomanuf., 5 (4) (2015) 261–269.

    Article  Google Scholar 

  22. C. Prakash, H. K. Kansal, B. S. Pabla and S. Puri, Powder mixed electric discharge machining an innovative surface modification technique to enhance fatigue performance and bioactivity of ß-Ti implant for orthopaedics application, International Conference on Innovative Design and Manufacturing, Auckland (2016) 107.

    Google Scholar 

  23. A. Ikram, N. A. Mufti, M. Q. Saleem and A. R. Khan, Parametric optimization for surface roughness, kerf and MRR in wire electrical discharge machining (WEDM) using Taguchi design of experiment, J. of Mech. Sci. and Tech., 27 (7) (2013) 2133–2141.

    Article  Google Scholar 

  24. T. P. Dao and S. C. Huang, Robust design for a flexible bearing with 1-DOF translation using the Taguchi method and the utility concept, J. Mech. Sci. Technol., 29 (8) (2015) 3309–3320.

    Article  Google Scholar 

  25. J. H. Jung and W. T. Kwon, Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis, J. Mech. Sci. Technol., 24 (5) (2010) 1083–1090.

    Article  Google Scholar 

  26. M. Santhanakumar, R. Adalarasan and M. Rajmohan, Parameter design for cut surface characteristics in abrasive waterjet cutting of Al/SiC/Al2O3 composite using grey theory based RSM, J. of Mech. Sci. and Tech., 30 (1) (2016) 371–379.

    Article  Google Scholar 

  27. S. Gopalakannan and T. Senthilvelan, Optimization of machining parameters for EDM operations based on central composite design and desirability approach, J. of Mech. Sci. and Tech., 28 (3) (2014) 1045–1053.

    Article  Google Scholar 

  28. Z. Tao, S. Yaoyao, L. Xiaojun and H. Tianran, Optimization of abrasive flow polishing process parameters for static blade ring based on response surface methodology, J. of Mech. Sci. and Tech., 30 (3) (2016) 1085–1093.

    Article  Google Scholar 

  29. R. N. Yadav, V. Yadava and G. K. Singh, Application of non-dominated sorting genetic algorithm for multiobjective optimization of electrical discharge diamond face grinding process, J. of Mech. Sci. and Tech., 28 (6) (2014) 2299–2306.

    Article  Google Scholar 

  30. P. S. Bharti, S. Maheshwari and C. Sharma, Multiobjective optimization of electric-discharge machining process using controlled elitist NSGA-II, J. of Mech. Sci. and Tech., 26 (6) (2012) 1875–1883.

    Article  Google Scholar 

  31. K. Deb, S. Agarwal, A. Pratap and T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II, IEEE Trans. Evol. Comput., 6 (2) (2000).

    Google Scholar 

  32. A. K. Singh, S. Kumar and V. P. Singh, Effect of the addition of conductive powder in dielectric on the surface properties of superalloy Super Co 605 by EDM process, Int. J. Adv. Manuf. Technol., 77 (1) (2015) 99–106.

    Article  Google Scholar 

  33. C. Prakash, H. K. Kansal, B. S. Pabla and S. Puri, Experimental investigations in powder mixed electrical discharge machining of Ti-35Nb-7Ta-5Zr ß-Ti alloy, Mater. Manuf. Process (2016) DOI: /10.1080/10426914.2016. 1198018.

    Google Scholar 

  34. S. L. Chen, M. H. Lin, G. X. Huang and C. C. Wang, Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent, Appl. Surf. Sci., 311 (2014) 47–53.

    Article  Google Scholar 

  35. S. L. Chen, M. H. Lin, C. C. Chen and K. L. Ou, Effect of electro-discharging on formation of biocompatible layer on implant surface, J. Alloys Compd., 456 (1-2) (2008) 413–418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Kansal.

Additional information

Recommended by Associate Editor Hak-Sung Kim

Chander Prakash is an Assistant Professor in the Department of Mechanical Engineering, UIET, Panjab University, He received B. Tech. (2007) and M. Tech. (2010) from Kurukshetra University of Kurukshetra. He is pursuing a Ph.D. from Panjab University, Chandigarh in the area of surface modification of biomedical implants for orthopedics application.

Harmesh Kumar Kansal is a Professor and Head of the Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India. He received his B.E., M.Tech. and Ph.D. in Mechanical Engineering with distinction. His area of research is non-conventional machining, design of experiment, production engineering, welding and quality control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Kansal, H.K., Pabla, B.S. et al. Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J Mech Sci Technol 30, 4195–4204 (2016). https://doi.org/10.1007/s12206-016-0831-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0831-0

Keywords

Navigation