Skip to main content
Log in

Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection

  • Design Optimization and Applications in Civil Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of data for structural health monitoring and damage detection, while how to effectively interpret these complex sensor data to technical information posts many challenges. This paper presents three optimization-algorithm based support vector machines for damage detection. The optimization algorithms, including grid-search, partial swarm optimization and genetic algorithm, are used to optimize the penalty parameters and Gaussian kernel function parameters. Two types of feature extraction methods in terms of time-series data are selected to capture effective damage characteristics. A benchmark experimental data with the 17 different scenarios in the literature were used for verifying the proposed data-driven methods. Numerical results revealed that all three optimized machine learning methods exhibited significantly improvement in sensitivity, accuracy and effectiveness over conventional methods. The genetic algorithm based SVM had a better prediction than other methods. Two different feature methods used in this study also demonstrated the appropriate features are crucial to improve the sensitivity in detecting damage and assessing structural health conditions. The findings of this study are expected to help engineers to process big data and effectively detect the damage/defects, and thus enable them to make timely decision for supporting civil infrastructure management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bisgin, H., Kilinc, O. U., Ugur, A., Xu, X., and Tuzcu, V. (2011). “Diagnosis of long QT syndrome via support vector machines classification.” Journal of Biomedical Science and Engineering, Vol. 4, No. 4, pp. 4, DOI: 10.4236/jbise.2011.44036.

    Article  Google Scholar 

  • Boldt, F. D. A., Rauber, T. W., and Ao, F. M. V. (2013). “Feature extraction and selection for automatic fault diagnosis of rotating machinery.” http://www.lbd.dcc.ufmg.br/colecoes/eniac/2013/0011.pdf.

    Google Scholar 

  • Bornn, L., Farrar, C. R., Park, G., and Farinholt, K. (2009). “Structural health monitoring with autoregressive support vector machines.” Journal of Vibration and Acoustics, Vol. 131, No. 2, pp. 021004-021004, DOI: 10.1115/1.3025827.

    Google Scholar 

  • Cha, Y.-J. and Buyukozturk, O. (2015). “Structural damage detection using modal strain energy and hybrid multiobjective optimization.” Computer-Aided Civil and Infrastructure Engineering, Vol. 30, No. 5, pp. 347–358, DOI: 10.1111/mice.12122.

    Article  Google Scholar 

  • Chong, J. W., Kim, Y., and Chon, K. H. (2014). “Nonlinear multiclass support vector machine–based health monitoring system for buildings employing magnetorheological dampers.” Journal of Intelligent Material Systems and Structures, Vol. 25, No. 12, pp. 1456–1468. DOI: 10.1177/1045389x13507343.

    Article  Google Scholar 

  • Dushyanth, N. D., Suma, M. N., and Latte, M. V. (2016). “Detection and localization of damage using empirical mode decomposition and multilevel support vector machine.” Applied Physics A, Vol. 122, No. 3, pp. 1–9, DOI: 10.1007/s00339-016-9753-z.

    Article  Google Scholar 

  • Fahim, A. A., Gallego, R., Bochud, N., and Rus, G. (2013). “Model-based damage reconstruction in composites from ultrasound transmission.” Composites Part B: Engineering, Vol. 45, No. 1, pp. 50–62, DOI: 10.1016/j.compositesb.2012.09.003.

    Article  Google Scholar 

  • Farrar, C. R. and Worden, K. (2007). “An introduction to structural health monitoring.” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 365, No. 1851, pp. 303–315, DOI: 10.1098/rsta.2006.1928.

    Article  Google Scholar 

  • Farrar, C. R. and Worden, K. (2013). Structural Health Monitoring: A Machine Learning Perspective, John Wiley & Sons, Ltd., Chichester, UK.

    Google Scholar 

  • Figueiredo, E., Figueiras, J., Park, G., Farrar, C. R., and Worden, K. (2011). “Influence of the autoregressive model order on damage detection.” Computer-Aided Civil and Infrastructure Engineering, Vol. 26, No. 3, pp. 225–238, DOI: 10.1111/j.1467-8667.2010.00685.x.

    Article  Google Scholar 

  • Figueiredo, E., Park, G., Farrar, C. R., Worden, K., and Figueiras, J. (2011). “Machine learning algorithms for damage detection under operational and environmental variability.” Structural Health Monitoring, Vol. 10, No. 6, pp. 559–572, DOI: 10.1177/1475921710388971.

    Article  Google Scholar 

  • Figueiredo, E., Park, G., Figueiras, J., Farrar, C., and Worden, K. (2009). “Structural health monitoring algorithm comparisons using standard data sets.” Technical ReportLA-14393.

    Google Scholar 

  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D. (2000). “Support vector machine classification and validation of cancer tissue samples using microarray expression data.” Bioinformatics, Vol. 16, No. 10, pp. 906–914, DOI: 10.1093/bioinformatics/16.10.906.

    Article  Google Scholar 

  • Ge, R., Pan, H., Lin, Z., Gong, N., and Wang, J. (2016). “RF-Powered Batteryless Wireless Sensor Network.” The 5th International Symposium on Next-Generation Electronics Hsinchu, Taiwan, pp. 32–33.

    Google Scholar 

  • Gersch, W. (1970). “Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series.” IEEE Transactions on Automatic Control, Vol. 15, No. 5, pp. 583–588, DOI: 10.1109/TAC.1970.1099560.

    Article  MathSciNet  Google Scholar 

  • Ghiasi, R., Torkzadeh, P., and Noori, M. (2016). “A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function.” Structural Health Monitoring, Vol. 15, No. 3, pp. 302–316, DOI: 10.1177/1475921716639587.

    Article  Google Scholar 

  • Herrasti, Z., Val, I., Gabilondo, I., Berganzo, J., Arriola, A., and Martínez, F. (2016). “Wireless sensor nodes for generic signal conditioning: Application to Structural Health Monitoring of wind turbines.” Sensors and Actuators A: Physical, Vol. 237, pp. 604–613, DOI: 10.1016/j.sna.2016.06.027.

    Article  Google Scholar 

  • Holland, J. and ARbor, A. (1975). Adaptation in natural and artificial systems, MIT press, Cambrige.

    Google Scholar 

  • Hou, Z., Noori, M., and Amand, R. S. (2000). “Wavelet-based approach for structural damage detection.” Journal of Engineering Mechanics, Vol. 126, No. 7, pp. 677–683, DOI: 10.1061/(ASCE)0733-9399(2000)126:7(677)

    Article  Google Scholar 

  • Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2010). “A practical guide to support vector classification.” http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

    Google Scholar 

  • Huang, C.-L. and Dun, J.-F. (2008). “A distributed PSO–SVM hybrid system with feature selection and parameter optimization.” Applied Soft Computing, Vol. 8, No. 4, pp. 1381–1391, DOI: 10.1016/j.asoc. 2007.10.007.

    Article  Google Scholar 

  • Huang, Q., Tang, B., and Deng, L. (2015). “Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring.” Measurement, Vol. 66, pp. 35–44, DOI: 10.1016/j.measurement.2015.01.021.

    Article  Google Scholar 

  • Kaveh, A., Bakhshpoori, T., and Azimi, M. (2015). “Seismic optimal design of 3D steel frames using cuckoo search algorithm.” The Structural Design of Tall and Special Buildings, Vol. 24, No. 3, pp. 210–227, DOI: 10.1002/tal.1162.

    Article  Google Scholar 

  • Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” In Proceedings of the IEEE international conference on neural networks IV, IEEE, Piscataway, pp. 1942–1948

    Chapter  Google Scholar 

  • Li, H., and Zhang, Y. (2009). “An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA.” Proc., Electronic Measurement & Instruments, 2009. ICEMI '09. 9th International Conference on, pp. 4-1023-1024-1027, DOI: 10.1109/ICEMI.2009.5274151.

    Google Scholar 

  • Lin, Z., Fakhairfar, M., Wu, C., and Chen, G. (2013). “Design, construction and load testing of the pat daly road bridge in washington county, mo, with internal glass fiber reinforced polymers reinforcement, washington county, missouri.” Final Report NUTC R275, Washington County Commission and US Department of Transportation.

    Google Scholar 

  • Lin, Z., Fakharifar, M., Huang, Y., Chen, G., and Wang, Z. (2014). “Damage detection of a full-size concrete box girder bridge with the moving-window least-square fitting method.” NDE/NDT for Structural Materials Technology for Highway & Bridges.

    Google Scholar 

  • Lin, Z., Zhao, J., and Habib, T. (2012). “Impact of overweight vehicles (with Heavy Axle Loads) on bridge deck deterioration.” Final Report CFIRE 04-06, USDOT's RITA by CFIRE and UW-Milwaukee, Wisconsin, http://www.wistrans.org/cfire/documents/FR_0406.pdf.

    Google Scholar 

  • Liu, C., Harley, J. B., Bergés, M., Greve, D. W., and Oppenheim, I. J. (2015). “Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition.” Ultrasonics, Vol. 58, pp. 75–86, DOI: 10.1016/j.ultras.2014.12.005.

    Article  Google Scholar 

  • Magalhães, F., Cunha, A., and Caetano, E. (2012). “Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection.” Mechanical Systems and Signal Processing, Vol. 28, pp. 212–228, DOI: 10.1016/j.ymssp. 2011.06.011.

    Article  Google Scholar 

  • Masri, S. F., Smyth, A. W., Chassiakos, A. G., Caughey, T. K., and Hunter, N. F. (2000). “Application of neural networks for detection of changes in nonlinear systems.” Journal of Engineering Mechanics, Vol. 126, No. 7, pp. 666–676, DOI: 10.1061/(ASCE)0733-9399(2000)126:7(666).

    Article  Google Scholar 

  • Melgani, F. and Bazi, Y. (2008). “Classification of electrocardiogram signals with support vector machines and particle swarm optimization.” IEEE Transactions on Information Technology in Biomedicine, Vol. 12, No. 5, pp. 667–677, DOI: 10.1109/TITB.2008.923147.

    Article  Google Scholar 

  • Neerukatti, R. K., Hensberry, K., Kovvali, N., and Chattopadhyay, A. (2016). “A novel probabilistic approach for damage localization and prognosis including temperature compensation.” Journal of Intelligent Material Systems and Structures, Vol. 27, No. 5, pp. 592–607, DOI: 10.1177/1045389x15575084.

    Article  Google Scholar 

  • Oh, C. K. and Sohn, H. (2009). “Damage diagnosis under environmental and operational variations using unsupervised support vector machine.” Journal of Sound and Vibration, Vol. 325, No. 1, pp. 224–239, DOI: 10.1016/j.jsv.2009.03.014.

    Article  Google Scholar 

  • Pan, H., Ge, R., Wang, J., Gong, N., and Lin, Z. (2016). “integrated wireless sensor networks with UAS for damage detection and monitoring of bridges and other large-scale critical civil infrastructures.” NDE/NDT for Highway and Bridges: Structural Materials Technology Portland, OR, USA

    Google Scholar 

  • Pavlopoulou, S., Worden, K., and Soutis, C. (2016). “Novelty detection and dimension reduction via guided ultrasonic waves: Damage monitoring of scarf repairs in composite laminates.” Journal of Intelligent Material Systems and Structures, Vol. 27, No. 4, pp. 549–566, DOI: 10.1177/1045389x15574937.

    Article  Google Scholar 

  • Santos, A., Figueiredo, E., Silva, M. F. M., Sales, C. S., and Costa, J. C. W. A. (2016). “Machine learning algorithms for damage detection: Kernel-based approaches.” Journal of Sound and Vibration, Vol. 363, pp. 584–599, DOI: 10.1016/j.jsv.2015.11.008.

    Article  Google Scholar 

  • Seyedpoor, S. M. (2012). “A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization.” International Journal of Non-Linear Mechanics, Vol. 47, No. 1, pp. 1–8, DOI: 10.1016/j.ijnonlinmec.2011.07.011.

    Article  MathSciNet  Google Scholar 

  • Sharma, A., Amarnath, M., and Kankar, P. (2016). “Feature extraction and fault severity classification in ball bearings.” Journal of Vibration and Control, Vol. 22, No. 1, pp. 176–192, DOI: 10.1177/1077546314528021.

    Article  Google Scholar 

  • Sohn, H., Farrar, C. R., Hunter, N. F., and Worden, K. (2001). “Structural health monitoring using statistical pattern recognition techniques.” Journal of Dynamic Systems, Measurement, and Control, Vol. 123, No. 4, pp. 706–711, DOI: 10.1115/1.1410933.

    Article  Google Scholar 

  • Suykens, J. A. K. and Vandewalle, J. (1999). “Least squares support vector machine classifiers.” Neural Processing Letters, Vol. 9, No. 3, pp. 293–300, DOI: 10.1023/a:1018628609742.

    Article  MATH  Google Scholar 

  • Tibaduiza, D. A., Mujica, L. E., Rodellar, J., and Güemes, A. (2015). “Structural damage detection using principal component analysis and damage indices.” Journal of Intelligent Material Systems and Structures, Vol. 27, No. 2, pp. 233–248, 10.1177/1045389x14566520pp, DOI: 10.1177/1045389x14566520.

    Article  Google Scholar 

  • Watters, D. G., Jayaweera, P., Bahr, A. J., and Huestis, D. L. (0000). “Design and performance of wireless sensors for structural health monitoring.” Proc., Review of Progress in Quantitative Nondestructive Evaluation, 29 July-3 Aug. 2001, AIP, pp. 969-976, DOI: 10.1063/1.1472901.

  • Widodo, A. and Yang, B.-S. (2007). “Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors.” Expert Systems with Applications, Vol. 33, No. 1, pp. 241–250, DOI: 10.1016/j.eswa.2006.04.020.

    Article  Google Scholar 

  • Worden, K. and Dulieu-Barton, J. M. (2004). “An overview of intelligent fault detection in systems and structures.” Structural Health Monitoring, Vol. 3, No. 1, pp. 85–98, DOI: 10.1177/1475921704041866.

    Article  Google Scholar 

  • Worden, K. and Lane, A. J. (2001). “Damage identification using support vector machines.” Smart Materials and Structures, Vol. 10, No. 3, pp. 540, DOI: 0964-1726/10/i=3/a=317.

    Article  Google Scholar 

  • Worden, K., Farrar, C. R., Manson, G., and Park, G. (2007). “The fundamental axioms of structural health monitoring.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, Vol. 463, No. 2082, pp. 1639–1664, DOI: 10.1098/rspa.2007. 1834.

    Article  Google Scholar 

  • Yan, F. and Lin, Z. (2016). “New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm.” Composites Part B: Engineering, Vol. 92, No. 42, pp. 420–433, DOI: 10.1016/j.compositesb.2016. 02.008.

    Article  Google Scholar 

  • Yan, F., Lin, Z., Wang X., Azarmi F., and Sobolev, K. (2016). “Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm.” Composite Structures, In press, DOI: 10.1016/j.compstruct.2016.11.068.

    Google Scholar 

  • Yao, R. and Pakzad, S. N. (2012). “Autoregressive statistical pattern recognition algorithms for damage detection in civil structures.” Mechanical Systems and Signal Processing, Vol. 31, pp. 355–368, DOI: 10.1016/j.ymssp.2012.02.014.

    Article  Google Scholar 

  • Yeesock, K., Jo Woon, C., Ki, H. C., and JungMi, K. (2013). “Waveletbased AR–SVM for health monitoring of smart structures.” Smart Materials and Structures, Vol. 22, No. 1, pp. 015003, DOI: 0964-1726/22/i=1/a=015003.

    Article  Google Scholar 

  • Ying, Y. J. H. G., Oppenheim, I. J., Soibelman, L., Harley, J. B., Shi, J., and Jin, Y. (2013). “Toward data-driven structural health monitoring: Application of machine learning and signal processing to damage detection.” Journal of Computing in Civil Engineering, Vol. 27, No. 6, pp. 667–680, DOI: 10.1061/(ASCE)CP.1943-5487.0000258.

    Article  Google Scholar 

  • Zang, C. and Imregun, M. (2001). “STRUCTURAL DAMAGE DETECTION USING ARTIFICIAL NEURAL NETWORKS AND MEASURED FRF DATA REDUCED VIA PRINCIPAL COMPONENT PROJECTION.” Journal of Sound and Vibration, Vol. 242, No. 5, pp. 813–827, DOI: 10.1006/jsvi.2000.3390.

    Article  MATH  Google Scholar 

  • Zou, Y., Tong, L., and Steven, G. P. (2000). “VIBRATION-BASED MODEL-DEPENDENT DAMAGE (DELAMINATION) IDENTIFICATION AND HEALTH MONITORING FOR COMPOSITE STRUCTURES — A REVIEW.” Journal of Sound and Vibration, Vol. 230, No. 2, pp. 357–378, DOI: 10.1006/jsvi.1999.2624.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, G., Pan, H., Lin, Z. et al. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection. KSCE J Civ Eng 21, 523–534 (2017). https://doi.org/10.1007/s12205-017-1518-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1518-5

Keywords

Navigation