Skip to main content
Log in

Drag Reduction on a Square Cylinder using Multiple Detached Control Cylinders

  • Hydraulic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

A two-dimensional numerical simulation for flow over a main cylinder with detached controlling cylinders placed at different position is performed through Lattice Boltzmann Method (LBM) to reduce fluid forces. For this study the Reynolds number (Re) is fixed at 160, while gap ratio between these cylinders are taken in the range from 0.5 to 8. The results yield in terms of vorticity, time-series analysis of drag and lift coefficients, power spectra of lift coefficients and force statistics. Depending on gap spacing, flow is classified into four different patterns, called as (i) single blender body, (ii) shear layer reattachment, (iii) fully developed flow and (iv) vortex suppression fully developed flow patterns. In comparison of all three configurations, it is examined that the maximum value of Cdmean and Strouhal number occurs for downstream configuration. Whereas, upstream and dual configuration play a vital role to reduce forces and to suppress vortex shedding. The maximum reduction found in mean drag coefficient for downstream, upstream and for dual configuration is 8.3%, 51% and 50.8%, respectively. Whereas, the reduction in Clrms values for all three configurations is 84.4%, 58.2% and 86.4%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. S. M., Doolan, C. J., and Wheatley, V. (2012). “Low Reynolds number flow over a square cylinder with a splitter plate.” Int. J. Heat Fluid Flow., Vol. 36, pp. 133–141, DOI: 10.1063/1.3563619.

    Article  Google Scholar 

  • Alam, M. Md., Moriya, M., Takai, K., and Sakamoto, H. (2002). “Suppression of fluid forces acting on two square prisms in a tandem arrangement by passive control of flow.” J. Fluids Struct., Vol. 16, No. 8, pp. 1073–1092, DOI: 10.1006/jfls.2002.0458.

    Article  Google Scholar 

  • Abograis, A. and Alshayji, A. (2013). “Reduction of fluid forces on a square cylinder using passive control methods.” COMSOL Conference, Boston, USA.

    Google Scholar 

  • Breuer, M., Bernsdorf, J., Zeiser, T., and Durst, F. (2000). “Accurate computations of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite-volume.” Int. J. Heat Fluid Flow., Vol. 21, No. 2, pp. 186–196, DOI: 10.1016/S0142-727X-(99)00081-8.

    Article  Google Scholar 

  • Cheng, M., Whyte, D. S., and Lou, J. (2007). “Numerical simulation of flow around a square cylinder in uniform-shear flow.” J. Fluids Struct., Vol. 23, No. 2, pp. 207–226, DOI: 10.1016/j.jfluidstructs. 2006.08.011.

    Article  Google Scholar 

  • Cornubert, R., d’Humières, D., and Levermore, D. (1991). “A Knudsen number theory for lattice gases.” Physica D., Vol. 47, Nos. 1–2, pp. 241–259, DOI: 10.1016/0167-2789(91)90295-K.

    Article  MathSciNet  MATH  Google Scholar 

  • Doolan, C. J. (2009). “Flat-plate interaction with the near wake of a square cylinder.” AIAA Journal., Vol. 47, No. 2, pp. 475–478, DOI: 10.2514/1.40503.

    Article  Google Scholar 

  • Darekar, R. M. and Sherwin, S. J. (2001). “Flow past a bluff body with a wavy stagnation face.” J. Fluids Struct., Vol. 15, Nos. 3–4, pp. 587–596, DOI: 10.1006/jfls.2000.0354.

    Article  MATH  Google Scholar 

  • Dazhi, Y., Renwei, M., Luo, L. S., and Wei, S. (2003). “Viscous flow computations with the method of lattice Boltzmann equation.” Prog. Aerospace Sci., Vol. 39, No. 5, pp. 329–367, DOI: 10.1016/S0376-0421(03) 00003-4.

    Article  Google Scholar 

  • Fransson, J. H. M., Konieczny, P., and Alfredsson, P. H. (2004). “Flow around a porous cylinder subject to continuous suction or blowing.” J. Fluids Struct., Vol. 19, No. 8, pp. 1031–1048, DOI: 10.1016/j.jfluidstructs. 2004.06.005.

    Article  Google Scholar 

  • Fujisawa, N., Asano, Y., Arakawa, C., and Hashimoto, T. (2005). “Computational and experimental study on flow around a rotationally oscillating circular cylinder in a uniform flow.” J. Wind. Eng. Ind. Aerodyn., Vol. 93, No. 2, pp. 137–153, DOI: 10.10162Fj.jweia.2004. 11.002.

    Article  Google Scholar 

  • Gupta, A. (2013). “Suppression of vortex shedding in flow around a square cylinder using control cylinder.” Depart-ment of Mechanical Engineering Indian Institute of Technology, Kanpur, Report, pp. 1–13, DOI: 10.1002/-d.203.

    Google Scholar 

  • Guo, Z., Liu, H., Luo, L.-S., and Xu, K. (2008). “A compar-ative study of the LBE and GKS methods for 2D near incompressible laminar flows.” J. Comp. Phys., Vol. 227, No. 10, pp. 4955–4976, DOI: 10.1016/j.jcp.2008.01.024.

    Article  MATH  Google Scholar 

  • Galetti, B., Bruneau, C. H., Zanetti, L., and Iollo, A. (2004). “Low-order modeling of laminar flow regimes past a confined square cylinder.” J. Fluid Mech., Vol. 503, pp. 161–170, DOI: 10.1017/S0022112004007906.

    Article  MathSciNet  Google Scholar 

  • Islam, S. U., Rahman, H., Abbasi, W. S., and Shahina, T. (2015). “Lattice Boltzmann study of wake structure and force statistics for various gap spacings between a square cylinder with a detached flat plate.” Arab J. Sci. Eng., Vol. 40, No. 8, pp. 2169–2182, DOI: 10.1007/s13369-015-1648-3.

    Article  Google Scholar 

  • Igarashi, T. (1982). “Characteristics of a flow around two cir cular cylinders of different diameters arranged in tandem.” Bulletin of the JSME., Vol. 25, No. 201, pp. 349–57, DOI: 10.1299/jsme1958. 25.349.

    Article  Google Scholar 

  • Islam, S. U., Rahman, H., Abbasi, W. S., Noreen. U., and Khan, A. (2014). “Suppression of fluid force on flow past a square cylinder with a detached flat plate at low Reynolds number for various spacing ratios.” J. Mech. Sci. Tech., Vol. 28, No. 12, pp. 4969–4978, DOI: 10.1007/s12206-014-1118-y.

    Article  Google Scholar 

  • Kuo, C. H. and Chen, C. C. (2009). “Passive control of wake flow by two small control cylinders at Reynolds number 80.” J. Fluids Struct., Vol. 25, No. 6, pp. 1021–1028, DOI: 10.1016/j.jfluidstructs.2009.05.007.

    Article  Google Scholar 

  • Morel, T. and Bohn, M. (1980). “Flow over two circular disks in tandem.” ASME J. Fluids. Eng., Vol. 102, No. 1, pp. 104–111, DOI: 10.1115/1.3240599.

    Article  Google Scholar 

  • Moriya, M. and Sakamoto, H. (1986). “Effect of a vibrating upstream cylinder on a stationary downstream cylinder.” ASME J. Fluids. Eng., Vol. 108, No. 2, pp. 180–184, DOI: 10.1115/1.3242560.

    Article  Google Scholar 

  • Mittal, S. and Raghuvanshi, A. (2001). “Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers.” Int. J. Numer. Meth. Fluids., Vol. 35, pp. 421–447.

    Article  MATH  Google Scholar 

  • Malekzadeh, S. and Sohankar, A. (2012). “Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control rod.” Int. J. Heat Fluid Flow., Vol. 34, pp. 15–27, DOI: 10.1016/j.ijheatfluidflow.2011.12.008.

    Article  Google Scholar 

  • Mukhopadhyay, A., Biswas, G., and Sundararajan, T. (1992). “Numerical investigation of confined wakes behind a square cylinder in a channel.” Int. J. Numer. Meth. Fluids., Vol. 14, No. 12, pp. 1473–1484, DOI: 10.1002/fld.1650141208.

    Article  MATH  Google Scholar 

  • Mohammad, A. A. (2011). “Lattice Boltzmann Method: Fundamentals and Engineering Applications with Comput er Codes.” Springer.

    Book  Google Scholar 

  • Patil, P. P. and Tiwari, S. (2009). “Numerical investigation of laminar unsteady wakes behind two inline square cylinders in a Channel.” Eng. Appl. Comp. Fluid Mech., Vol. 3, No. 3, pp. 369–385, DOI: 10.1080/19942060.2009.11015277.

    Google Scholar 

  • Qian, Y., d’Humieres, D., and Lallemand, P. (1992). “Lattice BGK models for Navier-Stokes Equation.” Europhys. Lett., Vol. 17, No. 6, pp. 479–484, DOI: 10.1209/0295-5075/17/6/001.

    Article  MATH  Google Scholar 

  • Sakamoto, H., Haniu, H., and Obata, Y. (1987). “Fluctuating forces acting on two square prisms in a tandem arrange ment.” J. Wind. Eng. Ind. Aerodyn., Vol. 26, No. 1, pp. 85–103, DOI: 10.1016/0167-6105 (87)90037-7.

    Article  Google Scholar 

  • Sakamoto, H., Tan, K., Takeuchi, N., and Haniu, H. (1997). “Suppression of fluid forces acting on a square prism by the passive control.” ASME J. Fluids. Eng., Vol. 119, No. 3, pp. 506–511, DOI: 10.1115/1.2819273.

    Article  Google Scholar 

  • Sohankar, A. (2012). “A numerical investigation of the flow over a pair of identical square cylinders in a tandem arrangement.” Int. J. Numer. Meth. Fluids., Vol. 70, No. 10, pp. 1244–1257, DOI: 10.1002/fld.2739.

    Article  MathSciNet  Google Scholar 

  • Succi, S. (2001). Lattice Boltzmann Method for fluid dynamics and beyond, Oxford, UK: Oxford Univ. Press.

    MATH  Google Scholar 

  • Sharma, A. and Eswaran, V. (2004). “Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime.” Numer. Heat. Tranf, Part A., Vol. 45, No. 3, pp. 247–269.

    Article  Google Scholar 

  • Wolf-Gladrow, D. A. (2005). “Lattice-Gas Cellular Automata and Lattice Boltzmann Models-An introduction.” Springer.

    MATH  Google Scholar 

  • Zhao, M., Cheng, L., Teng, B., and Liang, D. F. (2005). “Numerical simulation of viscous flow past two circular cylinders of different diameters.” Applied Ocean Research, Vol. 27, No. 1, pp. 39–55, DOI: 10.1016/j.apor.2004.10.002.

    Article  Google Scholar 

  • Zhou, C. Y., Wang, L., and Huang, W. (2007). “Numerical study of fluid force reduction on a circular cylinder using tripping rods.” J. Mech. Sci. Tech., Vol. 21, pp. 1425–1435, DOI: 10.1007/BF03177429.

    Article  Google Scholar 

  • Zhou, L., Cheng, M., and Hung, K. C. (2005). “Suppression of fluid force on a square cylinder by flow control.” J. Fluids Struct., Vol. 21, pp. 151–161, DOI: 10.1016/j.j fluid structs.2005.07.002.

    Article  Google Scholar 

  • Zhou, C. Y., Wang, C., Islam, S. U., and Xiao, Y. Q. (2009). “Numerical study of fluid force reduction on a square cylinder using a control rod.” Proceedings of the Nine-teenth International Offshore and Polar Engineering Conference.

    Google Scholar 

  • Zdravkovich, M. M. (1977). “Review of flow interference between two circular cylinders in various arrangements.” Journal of Fluids Engineering., Vol. 99, No. 4, pp. 618–633, DOI: 10.1115/1.3448871.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheela Manzoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams-Ul-Islam, Manzoor, R., Khan, U. et al. Drag Reduction on a Square Cylinder using Multiple Detached Control Cylinders. KSCE J Civ Eng 22, 2023–2034 (2018). https://doi.org/10.1007/s12205-017-0239-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0239-0

Keywords

Navigation