Skip to main content
Log in

Compression characteristics of ultra-soft clays subjected to simulated staged preloading

  • Highway Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Ultra-soft soils have high water content, low strength, and high compressibility. Staged preloading has been commonly used in China to improve ultra-soft soils during land reclamation before highways and other structures are constructed. In this study, seven series of one-dimensional consolidation tests were performed on undisturbed, remolded, or reconstituted specimens of three types of soils subjected to simulated, staged loading. Test results showed that the compression curves had two straight lines, which intersected at a yield stress. Burland’s concept of the intrinsic compression line was adopted to present the compression curves of reconstituted clays at different initial water contents. The intrinsic compression line was modified to better fit the test data for the stresses lower than 40 kPa. The coefficient of soil consolidation increased with an increase of the effective vertical stress as a result of the rate of increase in constrained modulus higher than that of decrease in permeability. The maximum coefficient of secondary consolidation, Cámax, was correlated with the ratio of the initial void ratio to the void ratio at yield stress by a unique curve, which was proposed to distinguish the pre-yield stress from the post-yield stress state. Test results showed that the secondary compression characteristics depended on the applied stress and the initial void ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berilgen, S. A., Berilgen, M. M., and Ozaydin, I. K. (2006). “Compression and permeability relationships in high water content clays.” Applied Clay Science, Vol. 31, Nos. 3–4, pp. 249–261, DOI: 10.1016/j.clay.2005.08.002.

    Article  Google Scholar 

  • Bo, M. W., Arulrajah, A., and Choa, V. (1997). “Large deformation of slurry-like soil.” Deformation and Progressive Failure in Geomechanics, Asaoka, A., Adachi, T, and Oka, F. (eds.), Balkema, pp. 437–442.

    Google Scholar 

  • Bo, M. W., Choa, V., Wong, K. S., and Arulrajah, A. (2011). “Laboratory validation of ultra-soft soil deformation model.” Geotechnical and Geological Engineering, Vol. 29, No. 1, pp. 65–74, DOI: 10.1007/s10706-010-9351-3.

    Article  Google Scholar 

  • Bo, M. W., Wong, K. S., and Choa, V. (2008). “Constant rate of displacement test on ultra-soft soil.” Geotechnical Engineering, Vol. 161, pp. 129–135, DOI: 10.1680/geng.2008.161.3.129.

    Google Scholar 

  • Burland, J. B. (1990). “On the compressibility and shear strength of natural clays.” Geotechnique, Vol. 40, No. 3, pp. 329–378. DOI: 10.1680/geot.1990.40.3.329.

    Article  Google Scholar 

  • Cao, Y. P. (2007). “Relationship of Coefficients of secondary consolidation with moisture content of saturated cohesive soil.” China Harbor Engineering, Vol. 6, No. 3, pp. 21–23, DOI: 10.3969/j.issn.1003-3688.2007.03.006.

    Google Scholar 

  • Cao, Y. H., Li, W., and Liu, T. Y. (2011). “Surface-layer improvement technology for ultra soft soil by vacuum preloading.” Chinese Journal of Geotechnical Engineering (supplement), Vol. 33, No. 1, pp. 234–238.

    MathSciNet  Google Scholar 

  • Casagrande, A. and Fadum, R. E. (1940). “Notes on soil testing for engineering purpose.” Harvard Soil Mechanics Series, Cambridge Massachusetts: Harvard University, Graduate School of Engineering, Vol. 8, pp. 36–39.

    Google Scholar 

  • Cheng, Y. X., Du, D. J., and Li, Z. L. (2011). “The structural constitution of hydraulic fill in Tianjin Binhai New Area.” Journal of Engineering Geology, Vol. 19, No. Suppl, pp. 256–260.

    Google Scholar 

  • Chu, J., Bo, M. W., and Choa, V. (2006). “Improvement of ultra-soft soil using prefabricated vertical drains.” Geotextiles and Geomembranes, Vol. 24, No. 6, pp. 339–348, DOI: 10.1016/j.geotexmem.2006.04.004.

    Article  Google Scholar 

  • Dong, Z. L., Zhang, G. X., Zhou, Q., Luo, Y., Qiu, Q. C., and Li, Y. (2011). “Research and application of improvement technology of shallow ultra-soft soil formed by hydraulic reclamation in Tianjin Binhai new area.” Chinese Journal of Rock Mechanics and Engineering, Vol. 30, No. 5, pp. 1073–1080.

    Google Scholar 

  • Duncan, J. M. (1993). “Limitation of conventional analysis of consolidation settlement.” Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 9, pp. 1333–1359, DOI: 10.1061/(ASCE)0733-9410(1993)119:9(1333).

    Article  Google Scholar 

  • Fox, P. J. and Baxter, C. D. P. (1997). “Consolidation properties of soil slurries from hydraulic consolidation test.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 8, pp. 770–776, DOI: 10.1061/(ASCE)1090-0241(1997)123:8(770).

    Article  Google Scholar 

  • Gao, Y. B., Zhu, H. H., Ye, G. B., and Xu, C. (2004). “The investigation of the coefficient of secondary compression Ca in odometer tests.” Chinese Journal of Geotechnical Engineering, Vol. 26, No. 4, pp. 459–463, DOI: 10.3321/j.issn:1000-4548.2004.04.006.

    Google Scholar 

  • Gao, Z. Y., Zhang, M. Y., and Liu, L. Y. (2000). “Laboratory model test of vacuum preloading in combination with electro-osmotic consolidation.” China Harbor Engineering, Vol. 10, No. 5, pp. 58–61, DOI: 10.3969/j.issn.1003-3688.2000.05.014.

    Google Scholar 

  • Gibson, R. E., England, G. L., and Hussey, M. J. L. (1967). “The theory of one-dimensional consolidation of saturated clays.” Geotechnique, Vol. 17, No. 2, pp. 261–273, DOI: 10.1680/geot.1967.17.3.261.

    Article  Google Scholar 

  • Hong, Z. and Tsuchida, T. (1999). “On compression characteristics of Ariake clays.” Canadian Geotechnical Journal, Vol. 36, No. 5, pp. 807–814, DOI: 10.1139/t99-058.

    Article  Google Scholar 

  • Hong, Z. S, Zeng, L. L., Cui, Y. J., Cai, Y. Q., and Lin, C. (2012). “Compression behaviour of natural and reconstituted clays.” Geotechnique, Vol. 62, No. 4, pp. 291–301, DOI: 10.1680/geot.10.P.046.

    Article  Google Scholar 

  • Hong, Z., Shen, S., Deng, Y., and Negami, T. (2007). “Loss of soil structure for natural sedimentary clays.” Geotechnical Engineering, Vol. 160, No. 3, pp. 153–159, DOI: 10.1680/geng.2007.160.3.153.

    Google Scholar 

  • Hong, Z.-S., Yin, J., and Cui, Y.-J. (2010). “Compression behavior of reconstructed soils at high initial water contents.” Geotechnique, Vol. 60, No. 9, pp. 691–700, DOI: 10.1680/geot.09.P.059.

    Article  Google Scholar 

  • Huerta, A., Kriegsmann, G. A., and Krizek, R. J. (1988). “Permeability and compressibility of slurries from seepage-induced consolidation.” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 5, pp. 614–627, DOI: 10.1061/(ASCE)0733-9410(1988)114:5(614).

    Article  Google Scholar 

  • Kamon, M., Gu, H. D., and Masahiro, I. (2001). “Improvement of mechanical properties of ferrum lime stabilized soil with the addition of aluminum sludge.” Materials Science Research International, Vol. 7, No. 1, pp. 47–53, DOI: 10.2472/jsms.50.3Appendix_47.

    Google Scholar 

  • Kenneth, W. and Cargill, M. (1984). “Prediction of consolidation of very soft soil.” Journal Geotechnical Engineering, Vol. 110, No. 6, pp. 775–795, DOI: 10.1061/(ASCE)0733-9410(1984)110:6(775).

    Article  Google Scholar 

  • Lei, H. Y. and Xiao, S. F. (2002). “Study on secondary-consolidation deformation characteristics of soft soil in Tianjin.” Journal of Engineering Geology, Vol. 10, No. 4, pp. 385–389, DOI: 10.3969/j.issn.1004-9665.2002.04.007.

    Google Scholar 

  • Ling, P., Xu, Z. H., and Zeng, L. S. (2003). “Research on coefficient of consolidation of soft clay under compression.” Rock and Soil Mechanics, Vol. 24, No. 1, pp. 106–108, DOI: 10.3969/j.issn.1000-7598.2003.01.018.

    Google Scholar 

  • Liu, P. H., Wang, Q., and Dong, J. X. (2005). “Microstructure experimental investigation of indoor reinforced dredger fill.” Hydrogeology and Engineering Geology, Vol. 32, No. 4, pp. 21–23, DOI: 10.3969/j.issn.1000-3665.2005.04.006.

    Google Scholar 

  • Liu, Y., Wang, Q., and Xiao, D. F. (2003b). “The comparative research on fundamental properties of dredger fill in different areas.” Geotechnical Engineering Technique, Vol. 4, No. 00, pp. 197–200. DOI: 10.3969/j.issn.1007-2993.2003.04.003.

    Google Scholar 

  • Liu, Y., Xiao, S. F., and Wang, Q. (2003a). “Mechanism analysis of increase in structural strength of solidified dredger fill.” Journal of Tongji University (Natural Science), Vol. 31, No. 11, pp. 1295–1298. DOI: 10.3969/j.issn.1000-7598.2003.01.018.

    Google Scholar 

  • Mesri, G. and Feng, T. W. (1991). “Surcharging to reduce secondary settlements.” Proceedings, International Conference on Geotechnical Engineering for Coastal Development, Yokohama, Vol. 1, No. 00, pp. 359–364, DOI: 10.1016/0148-9062(93)90902-P.

    Google Scholar 

  • Mikasa, M. (1963). The consolidation of soft clay — a new consolidation theory and its application, Kajima Institution Publishing Co., Ltd., Tokyo, Japan.

    Google Scholar 

  • Miller, P. G. and Tsugawa, P. R. (2000). “Influence of soil type on stabilization with cement kiln dust.” Construction and Building Materials, Vol. 14, No. 2, pp. 89–97, DOI: 10.1016/S0950-0618(00)00007-6.

    Article  Google Scholar 

  • Ministry of Transportation, PRC (JTS147-1-2010) (2010). Code for soil foundations of ports, Beijing, China.

    Google Scholar 

  • Mitchell, K. (1993). Fundamentals of Soil Behavior, 2nd edition. New York, NY, USA: John Wiley & Sons.

    Google Scholar 

  • Nagaraj, T. S., Srinivasa, M. B. R., Vatsala, A., and Joshi, R. C. (1990). “Analysis of compressibility of sensitive soils.” Journal of Geotechnical Engineering Division, ASCE, Vol. 116, No. 1, pp. 105–118, DOI: 10.1061/(ASCE)0733-9410(1990)116:1(105).

    Article  Google Scholar 

  • Qing, Y. S., Li, Z. Y., Cao, D. Z., Gu, L. J., and Sun, Y. J. (1999). “Consolidation of soft soil foundation by vacuum-pumping in low level position.” GeoScience, Vol. 13, No. 4, pp. 471–477.

    Google Scholar 

  • Shenbaga, R. K. and Havanagi, V. G. (1999). “Compressive strength of cement stabilized flyash-soil mixtures.” Cement and Concrete Research, Vol. 29, No. 5, pp. 673–677, DOI: 10.1016/S0008-8846(99)00018-6.

    Article  Google Scholar 

  • Sivapullaiah, P. V., Prashanth, J. P., Sridharan, A., and Narayana, B. V. (1998). “Reactive silica and strength of flashes.” Geotechnical and Geological Engineering, Vol. 16, No. 3, pp. 239–250, DOI: 10.1023/A:1008889326269.

    Article  Google Scholar 

  • Tang, Y. Q. and Zhou, L. Q. (2007). Environment Engineering Geology of Soft Soil, Transportation Press, Beijing.

    Google Scholar 

  • Taylor, D. W. (1942), Research on Consolidation of Clays, Serial 85, Massachusetts Institute of Technology. Cambridge: Depart. Of Civil and Sanitary Engineering.

    Google Scholar 

  • Terzaghi, K. and Peck, R. B. (1967). Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc.

    Google Scholar 

  • Tohari, A., Nishigaki, M., and Komatsu M. (2007). “Laboratory rainfallinduced slope failure with moisture content measurement.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 5, pp. 575–587, DOI: 10.1061/(ASCE)1090-0241(2007)133:5(575).

    Article  Google Scholar 

  • Weber, W. G. (1969). “Performance of embankments constructed over peat.” Journal of the Soil Mechanics and Foundations Division, ASCE 95(SM 1), pp. 53–76.

    Google Scholar 

  • Wen, H. J. and Zhang, Y. X. (2002). “Analysis of mechanism of drain and consolidation of super soft soil.” Journal of Chongqing University, Vol. 25, No. 9, pp. 82–85, DOI: 10.11835/j.issn.1000-582X.2002.09.023.

    Google Scholar 

  • Wen, H. J., Yan, C. F., and Wang, D. Y. (1999). “Some engineering properties of the dredger fill.” Journal of Chongqing Jianzhu University, Vol. 21, No. 2, pp. 79–83, DOI: 10.11835/j.issn.1674-4764.1999.02.017.

    Google Scholar 

  • Yin, J. H. (1999). “Non-linear creep of soils in oedometer tests.” Geotechnique, Vol. 49, No. 5, pp. 699–707.

    Article  Google Scholar 

  • Yin, J. H. and Graham, J. (1996). “Elastic visco-plastic modelling of one-dimensional consolidation.” Geotechnique, Vol. 46, No. 3, pp. 515–527, DOI: 10.1680/geot.1996.46.3.515.

    Article  Google Scholar 

  • Yin, Z. Z., Zhang, H. B., Zhu, J. G., and Li, G. W. (2003). “Secondary consolidation of soft soil.” Chinese Journal of Geotechnical Engineering, Vol. 25, No. 5, pp. 521–526, DOI: 10.3321/j.issn:1000-4548.2003.05.001.

    Google Scholar 

  • Yu, X. J., Yin, Z. Z., and Dong, W. J. (2007). “Influence of load on secondary consolidation deformation of soft soils.” Chinese Journal of Geotechnical Engineering, Vol. 29, No. 6, pp. 913–916. DOI: 10.3321/j.issn:1000-4548.2007.06.021.

    Google Scholar 

  • Zeng, L. L., Hong, Z. S., Cai, Y. Q., and Han, J. (2011). “Change of hydraulic conductivity during compression of undisturbed and remolded clays.” Applied Clay Science, Vol. 51, Nos. 1–2, pp. 86–93, DOI: 10.1016/j.clay.2010.11.005.

    Article  Google Scholar 

  • Zeng, L. L., Hong, Z. S., Liu, S. Y., Zhang, D. W., and Du, Y. J. (2011). “A method for predicting deformation caused by secondary consolidation for naturally sedimentary structural clays.” Rock and Soil Mechanics, Vol. 32, No. 10, pp. 3136–3142, DOI: 10.3969/j.issn.1000-7598.2011.10.041.

    Google Scholar 

  • Zhang, C. S. (2005). Study of the properties of deformation and consolidation of marine clay at shenzhen houhai Bay, PhD Dissertation, Guangzhou Institute of Geochemistry.

    Google Scholar 

  • Zhang, M., Zhao, Y. M., Gong, L., and Hu, R. H. (2010). “Test study of coefficient of consolidation of fresh hydraulic fill ultra-soft in Shenzhen bay.” Chinese Journal of Rock Mechanics and Engineering, Vol. 29, No. Supp.1, pp. 3157–3161.

    Google Scholar 

  • Zhou, Q. J. and Chen, X. P. (2006). “Test study on properties of secondary consolidation of soft soil.” Rock and Soil Mechanics, Vol. 27, No. 3, pp. 404–408, DOI: 10.3969/j.issn.1000-7598.2006.03.013.

    Google Scholar 

  • Zhu, Y. T., Zheng, A. R., and Li, W. (2008). “Laboratory tests for the consolidation property of dredger fill in the Shenzhen area.” Journal of Hunan University, Vol. 35, No. 11, pp. 120–123.

    Google Scholar 

  • Znidarcic, D. and Liu, J. C. (1989). “Consolidation characteristics determination for dredged materials.” Proc., 22nd Annual Dredging Seminar. for dredged Studies, Texas A&M Univ., College Station, Texas, pp. 45–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Wang, X., Chen, L. et al. Compression characteristics of ultra-soft clays subjected to simulated staged preloading. KSCE J Civ Eng 20, 718–728 (2016). https://doi.org/10.1007/s12205-015-0343-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0343-y

Keywords

Navigation