Skip to main content
Log in

Development of Rehabilitation and Assistive Robots in China: Dilemmas and Solutions

康复与辅助机器人在中国的发展:困境与对策

  • Review
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

China is rapidly becoming an aging society, leading to a significant demand for chronic disease management and personalized healthcare. The development of rehabilitation and assistive robotics in China has gathered significant attention not only in research fields but also in industries. Such robots aim to either guide patients in completing therapeutic training or assist people with impaired functions in performing their daily activities. In the past decades, we have witnessed the advancement in rehabilitation and assistive robotics, with diverse mechanical designs, functionalities, and purposes. However, the construction of dedicated regulations and policies is relatively lagged compared with the flourishing development in research fields. Moreover, these kinds of robots are working or collaborating closely with human beings, bringing unprecedented considerations on ethical issues. This paper aims to provide an overview of major dilemmas in the development of rehabilitation and assistive robotics in China and propose several potential solutions.

摘要

中国正在迅速进入老龄化社会,因此对慢性疾病管理和个性化医疗产生了巨大需求。在中国,康复和辅助机器人的发展在研究和工业领域都受到了极大的关注。康复和辅助机器人可以帮助指导患者完成康复训练,也能协助功能受损的人进行日常活动。在过去的几十年里,我们见证了具有不同的功能和用途的康复和辅助机器人的发展。然而,与研究领域的蓬勃发展相比,专门的法规和政策建设相对滞后。由于康复和辅助机器人需要与人类密切合作和互动,所以在相关伦理问题和法律法规方面建设带来了前所未有的挑战。本文旨在概述中国康复和辅助机器人主要发展困境,并提出相应的潜在对策。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CAMPISI J, KAPAHI P, LITHGOW G J, et al. From discoveries in ageing research to therapeutics for healthy ageing [J]. Nature, 2019, 571(7764): 183–192.

    Article  Google Scholar 

  2. GUO Y, CHEN W D, ZHAO J, et al. Medical robotics: Opportunities in China [J]. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5: 361–383.

    Article  Google Scholar 

  3. HOU Y J, DAN X L, BABBAR M, et al. Ageing as a risk factor for neurodegenerative disease [J]. Nature Reviews Neurology, 2019, 15(10): 565–581.

    Article  Google Scholar 

  4. FULLMAN N, YEARWOOD J, ABAY S M, et al. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016 [J]. The Lancet, 2018, 391(10136): 2236–2271.

    Article  Google Scholar 

  5. WU S M, WU B, LIU M, et al. Stroke in China: Advances and challenges in epidemiology, prevention, and management [J]. The Lancet Neurology, 2019, 18(4): 394–405.

    Article  Google Scholar 

  6. LO A C, GUARINO P D, RICHARDS L G, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke [J]. The New England Journal of Medicine, 2010, 362(19): 1772–1783.

    Article  Google Scholar 

  7. DELLON B, MATSUOKA Y. Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics] [J]. IEEE Robotics & Automation Magazine, 2007, 14(1): 30–34.

    Article  Google Scholar 

  8. MCCOLL D, NEJAT G. Meal-time with a socially assistive robot and older adults at a long-term care facility [J]. Journal of Human-Robot Interaction, 2013, 2(1): 152–171.

    Article  Google Scholar 

  9. GULL M A, BAI S P, BAK T. A review on design of upper limb exoskeletons [J]. Robotics, 2020, 9(1): 16.

    Article  Google Scholar 

  10. MENDEZ V, IBERITE F, SHOKUR S, et al. Current solutions and future trends for robotic prosthetic hands [J]. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4: 595–627.

    Article  Google Scholar 

  11. WANG L J, WANG J C, CHEN W D. Path planning and navigation for intelligent wheelchair in dynamic environments [J]. Journal of Shanghai Jiao Tong University, 2010, 44(11): 1524–1528 (in Chinese).

    Google Scholar 

  12. MATARI?M J. Socially assistive robotics: Human augmentation versus automation [J]. Science Robotics, 2017, 2(4): eaam5410.

    Google Scholar 

  13. GUO Y, GU X, YANG G Z. Human—robot interaction for rehabilitation robotics [M]//Digitalization in healthcare. Cham: Springer, 2021: 269–295.

    Chapter  Google Scholar 

  14. YANG G Z, CAMBIAS J, CLEARY K, et al. Medical robotics — Regulatory, ethical, and legal considerations for increasing levels of autonomy [J]. Science Robotics, 2017, 2(4): eaam8638.

    Article  Google Scholar 

  15. KREBS H I, HOGAN N, AISEN M L, et al. Robot-aided neurorehabilitation [J]. IEEE Transactions on Rehabilitation Engineering, 1998, 6(1): 75–87.

    Article  Google Scholar 

  16. NEF T, MIHELJ M, RIENER R. ARMin: A robot for patient-cooperative arm therapy [J]. Medical & Biological Engineering & Computing, 2007, 45(9): 887–900.

    Article  Google Scholar 

  17. ANGOLD H K R, HARDING N, RICHMOND K, et al. Ekso bionics-ekso bionics [J]. IEEE Spectrum, 2015, 49(1): 30–32.

    Google Scholar 

  18. ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury [J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11): 911–921.

    Article  Google Scholar 

  19. TAN X D, LIU X X, SHAO H Y. Healthy China 2030: A vision for health care [J]. Value in Health Regional Issues, 2017, 12: 112–114.

    Article  Google Scholar 

  20. DÍAZ I, GIL J J, SÁNCHEZ E. Lower-limb robotic rehabilitation: Literature review and challenges [J]. Journal of Robotics, 2011, 2011: 1–11.

    Article  Google Scholar 

  21. MIRIYEV A, STACK K, LIPSON H. Soft material for soft actuators [J]. Nature Communications, 2017, 8(1): 1–8.

    Article  Google Scholar 

  22. LEWIS M, SYCARA K, WALKER P. The role of trust in human-robot interaction [M]//Foundations of trusted autonomy. Cham: Springer, 2018: 135–159.

    Chapter  Google Scholar 

  23. CHENG L, CHEN M, LI Z W. Design and control of a wearable hand rehabilitation robot [J]. IEEE Access, 2018, 6: 74039–74050.

    Article  Google Scholar 

  24. GOPINATH D, JAIN S, ARGALL B D. Human-in-the-loop optimization of shared autonomy in assistive robotics [J]. IEEE Robotics and Automation Letters, 2017, 2(1): 247–254.

    Article  Google Scholar 

  25. POWLES J, HODSON H. Google DeepMind and healthcare in an age of algorithms [J]. Health and Technology, 2017, 7(4): 351–367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Zhao  (赵玲玲).

Additional information

Foundation item: the Zhejiang Provincial Philosophy and Social Science Foundation (No. 22NDQN293YB), and the Fund of the Science and Technology Commission of Shanghai Municipality (No. 20DZ2220400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Guo, Y. Development of Rehabilitation and Assistive Robots in China: Dilemmas and Solutions. J. Shanghai Jiaotong Univ. (Sci.) 28, 382–390 (2023). https://doi.org/10.1007/s12204-023-2596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-023-2596-9

Key words

关键词

CLC number

Document code

Navigation