Skip to main content
Log in

Effect of oil shale on Na+ solidification of red mud-fly ash cementitious material

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Red mud-fly ash based cementitious material mixed with different contents of oil shale calcined at 700°C is investigated in this paper. The effect of active Si and Al content on the solidification of Na+ during the hydration process is determined by using X-ray diffraction (XRD), 27Al and 29Si magic-angle-spinning nuclear magnetic resonance (MAS-NMR), infrared (IR), scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the content of oil shale has a remarkable effect on the solidified content of Na+. The hydration process generates a highly reactive intermediate gel phase formed by co-polymerisation of individual alumina and silicate species. This kind of gel is primarily considered as 3D framework of SiO4 and AlO4 tetrahedra interlinked by the shared oxygen atoms randomly. The negative charges and four-coordinated Al inside the network are mainly charge-balanced by Na+. The solidifying mechanism of Na+ is greatly attributed to the forming of this kind of gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindess S, Young J F, Drwin D. Concrete [M]. New Jersey: Prentice Hall, 2003.

    Google Scholar 

  2. Sersale R, Frigione G. Portland-zeolite-cement for minimising alkali-aggregat-expansion [J]. Cement and Concrete Research, 1987, 17(3): 404–410.

    Article  Google Scholar 

  3. Talling B, Brandstetr J. Present state and future of alkali-activated slag concretes [C]// Third International Conference Proceedings: Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Trondheim Norway: [s.n.], 1989: 1519–1546.

  4. Richardson I G. The nature of C-S-H in hardened cements [J]. Cement and Concrete Research, 1999, 29(8): 1131–1147.

    Article  Google Scholar 

  5. Brough A R, Katz A, Sun G K, et al. Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: Formation of zeolites and Al-substituted C-S-H [J]. Cement and Concrete Research, 2001, 31(10): 1437–1447.

    Article  Google Scholar 

  6. Jennings H M. Colloid model of C-S-H and implications to the problem of creep and shrinkage [J]. Materials and Structures, 2004, 37(1): 59–70.

    Article  MathSciNet  Google Scholar 

  7. Paspaliaris I, Karalis A. The effect of various additives on diasporic bauxite leaching by the Bayer process [C]// Proceedings of Light Metals. Denver, Colorado, USA: AIME, 1993: 35–39.

    Google Scholar 

  8. Liu Xiao-ming, Sun Heng-hu, Feng Xiang-peng, et al. Study on thermal activation technics of red mud [J]. Rare Metal Material and Engineering, 2007, 36 (sup1): 983–986 (in Chinese).

    Google Scholar 

  9. Basu P. Reactions of iron minerals in sodium aluminate solutions [C]//Proceedings of Light Metals. Atlanta, GA: AIME, 1983: 83–97.

    Google Scholar 

  10. Solymar K, Sajo I, Steiner J, et al. Characteristics and separability of red mud [C]//Proceedings of Light Metals. San Diego, California, USA: AIME, 1992: 209–223.

    Google Scholar 

  11. Liu X M, Zhang N, Sun H H, et al. Structural investigation relating to the cementitious activity of bauxite residue-red mud [J]. Cement and Concrete Research, 2011, 41(8): 847–853.

    Article  MathSciNet  Google Scholar 

  12. Zhang N, Sun H H, Liu X M, et al. Early-age characteristics of red mud-coal gangue cementitious material [J]. Journal of Hazardous Materials, 2009, 167(1–3): 927–932.

    Article  Google Scholar 

  13. Singh M, Upadhayay S N, Prasad P M. Preparation of iron rich cements using red mud [J]. Cement and Concrete Research, 1997, 27(7): 1037–1046.

    Article  Google Scholar 

  14. Potgieter J H, Horne K A, Potgieter S S, et al. An evaluation of the incorporation of a titanium dioxide producer’s waste material in Portland cement clinker [J]. Materials Letters, 2002, 57(1): 157–163.

    Article  Google Scholar 

  15. Sun H H, Li H J, Li Y, et al. Establishment of silicaalumina based cementitious system-sialite [J]. Rare Metal Material and Engineering, 2004, 33(sup2): 104–109.

    Google Scholar 

  16. Li H J, Sun H H, Xiao X J, et al. Mechanical properties of gangue-containing aluminosilicate based cementitious materials [J]. Journal of University of Science and Technology Beijing, 2006, 13(2): 183–189.

    Article  MATH  Google Scholar 

  17. Li H J, Sun H H, Tie X C, et al. Dissolution properties of calcined gangue [J]. Journal of University of Science and Technology Beijing, 2006, 13(6): 570–576.

    Article  Google Scholar 

  18. Feng X P, Sun H H, Liu X M. Practice of simulation to formation of rock theory [J]. Key Engineering Material, 2006, 336–338: 1918–1920.

    Google Scholar 

  19. Wang S D, Scrivener K L. 29Si and 27Al NMR study of alkali-activated slag [J]. Cement and Concrete Research, 2003, 33(5): 769–774.

    Article  Google Scholar 

  20. Fernández-Jiménez A, Puertas F, Sobrados I, et al. Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator [J]. Journal of the American Ceramic Society, 2003, 86(8): 1389–1394.

    Article  Google Scholar 

  21. Puertas F, Fernández-Jiménez A, Blanco-Varela M T. Pore solution in alkali-activated slag cement pastes: Relation to the composition and structure of calcium silicate hydrate [J]. Cement and Concrete Research, 2004, 34(1): 139–148.

    Article  Google Scholar 

  22. Engelhardt G, Michel D. High-resolution solidstate NMR of silicates and zeolites [M]. New York: John Wiley and Sons, 1987.

    Google Scholar 

  23. Andersen M D, Jakobsen H J, Skibsted J. Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: A high-field Al-27 and Si-29 MAS NMR investigation [J]. Inorganic Chemistry, 2003, 42(7): 2280–2287.

    Article  Google Scholar 

  24. Singh P S, Trigg M, Burgar I, et al. Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR [J]. Materials Science and Engineering, 2005, 396(1–2): 392–402.

    Google Scholar 

  25. Clayden N J, Esposito S, Jayasooriya U A, et al. Solid state 29Si NMR and FT Raman spectroscopy of the devitrification of lithium metasilicate glass [J]. Journal of Non-Crystalline Solids, 1998, 224(1): 50–56.

    Article  Google Scholar 

  26. Black L, Garbev K, Stemmermann P, et al. Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy [J]. Cement and Concrete Research, 2003, 33(6): 899–911.

    Article  Google Scholar 

  27. Faucon P, Charpentier T, Bertrandie D, et al. Characterization of calcium aluminate hydrates and related hydrates of cement pastes by 27Al MQ-MAS NMR [J]. Inorganic Chemistry, 1998, 37(15): 3726–3733.

    Article  Google Scholar 

  28. Faucon P, Charpentier T, Nonat A, et al. Triplequantum two-dimensional 27Al magic angle nuclear magnetic resonance study of the aluminum incorporation in calcium silicate hydrates [J]. Journal of the American Chemistry Society, 1998, 120(46): 12075–12082.

    Article  Google Scholar 

  29. Faucon P, Petit J C, Charpentier T, et al. Silicon substitution for aluminum in calcium silicate hydrates [J]. Journal of the American Ceramic Society, 1999, 82(5): 1307–1312.

    Article  Google Scholar 

  30. Toba M, Mizukami F, Niwa S, et al. Effect of preparation methods on properties of amorphous alumina silicas [J]. Journal of Materials Chemistry, 1994, 4(7): 1131–1135.

    Article  Google Scholar 

  31. Kirkpatrick R J, Brow R K. Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: A review [J]. Solid State Nuclear Magnetic Resonance, 1995, 5(1): 9–21.

    Article  Google Scholar 

  32. Mackenzie K J D, Hartman J S, Okada K. MAS NMR evidence for the presence of silicon in the alumina spinel from thermally transformed kaolinite [J]. Journal of the American Ceramic Society, 1996, 79(11): 2980–2982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ming Liu  (刘晓明).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 51034008 and 51104008), the China Postdoctoral Science Foundation Funded Project (No. 20100480202), the Research Fund for the Doctoral Program of Higher Education of China (No. 20100006120010) and the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-12-026A)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Xm., Li, Y., Sun, Hh. et al. Effect of oil shale on Na+ solidification of red mud-fly ash cementitious material. J. Shanghai Jiaotong Univ. (Sci.) 17, 723–729 (2012). https://doi.org/10.1007/s12204-012-1353-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-012-1353-2

Key words

CLC number

Navigation