Skip to main content
Log in

High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

A monobasal solid-state dye-sensitized solar cell (ssDSC) with mesoporous TiO2 beads was developed and an efficiency of 4% was achieved under air mass (AM) 1.5 illumination. Scattering properties and electron diffusion coefficients of TiO2 mesoporous beads and P25 nanoparticles were investigated. The results show that TiO2 mesoporous beads display higher scatterance than P25 nano-particles, and TiO2 mesoporous beads have higher electron diffusion coefficients (2.86 × 10−5 cm2·s−1) than P25 nano-particles (2.26 × 10−5 cm2·s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  2. Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634

    Article  Google Scholar 

  3. Hagen J, Schaffrath W, Otschik P, Fink R, Bacher A, Schmidt HW, Haarer D. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synthetic Metals, 1997, 89(3): 215–220

    Article  Google Scholar 

  4. Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583–585

    Article  Google Scholar 

  5. Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M. Organic dye for highly efficient solidstate dye-sensitized solar cells. Advanced Materials, 2005, 17(7): 813–815

    Article  Google Scholar 

  6. Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M. Tris(2-(1H-pyrazol-1-yl)pyridine) cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2011, 133(45): 18042–18045

    Article  Google Scholar 

  7. Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Letters, 2011, 11(4): 1452–1456

    Article  Google Scholar 

  8. Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Grätzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters, 2007, 7(11): 3372–3376

    Article  Google Scholar 

  9. Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Letters, 2009, 9(12): 4250–4257

    Article  Google Scholar 

  10. Wang M, Bai J, Le Formal F, Moon S J, Cevey-Ha L, Humphry-Baker R, Grätzel C, Zakeeruddin S M, Grätzel M. Solid-state dyesensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. Journal of Physical Chemistry C, 2012, 116(5): 3266–3273

    Article  Google Scholar 

  11. Zhang W, Zhu R, Ke L, Liu X, Liu B, Ramakrishna S. Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells. Small, 2010, 6(19): 2176–2182

    Article  Google Scholar 

  12. Tétreault N, Horváth E, Moehl T, Brillet J, Smajda R, Bungener S, Cai N, Wang P, Zakeeruddin S M, Forró L, Magrez A, Grätzel M. High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. ACS Nano, 2010, 4(12): 7644–7650

    Article  Google Scholar 

  13. Wang H, Liu G H, Li X, Xiang P, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Han H W. Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy & Environmental Science, 2011, 4(6): 2025–2029

    Article  Google Scholar 

  14. Chen D, Huang F, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210

    Article  Google Scholar 

  15. Xiang P, Li X, Wang H, Liu G H, Shu T, Zhou ZM, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Chen W, Liu T F, Zhang M L, Han H W. Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell. Nanoscale Research Letters, 2011, 6(1): 1–5

    Article  Google Scholar 

  16. Tiwana P, Parkinson P, Johnston M B, Snaith H J, Herz L M. Ultrafast terahertz conductivity dynamics in mesoporous TiO2: influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(2): 1365–1371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Xiang, P., Xu, M. et al. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode. Front. Optoelectron. 6, 413–417 (2013). https://doi.org/10.1007/s12200-013-0353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-013-0353-7

Keywords

Navigation