Skip to main content
Log in

Review of fiber Bragg grating sensor technology

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

The current status of the fiber Bragg grating (FBG) sensor technology was reviewed. Owing to their salient advantages, including immunity to electromagnetic interference, lightweight, compact size, high sensitivity, large operation bandwidth, and ideal multiplexing capability, FBG sensors have attracted considerable interest in the past three decades. Among these sensing physical quantities, temperature and strain are the most widely investigated ones. In this paper, the sensing principle of FBG sensors was briefly introduced first. Then, we reviewed the status of research and applications of FBG sensors. As very important for industrial applications, multiplexing and networking of FBG sensors had been introduced briefly. Moreover, as a key technology, the wavelength interrogation methods were also reviewed carefully. Finally, we analyzed the problems encountered in engineering applications and gave a general review on the development of interrogation methods of FBG sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee B. Review of the present status of optical fiber sensors. Optical Fiber Technology, 2003, 9(2): 57–79

    Article  Google Scholar 

  2. Rao Y J. In-fibre Bragg grating sensor. Measurement Science & Technology, 1997, 8(4): 355–375

    Article  Google Scholar 

  3. Othonos A. Fiber Bragg gratings. Review of Scientific Instruments, 1997, 68(12): 4309–4341

    Article  Google Scholar 

  4. Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263–1276

    Article  Google Scholar 

  5. Rao Y J. Fiber Bragg grating sensors: principles and applications. In: Grattan K T V, Meggitt B T, eds. Optical Fiber Sensor Technology, 1998, 2: 355–389

  6. Shu X W, Liu Y, Zhao D H, Gwandu B, Floreani F, Zhang L, Bennion I. Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement. Optics Letters, 2002, 27(9): 701–703

    Article  Google Scholar 

  7. Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, Askins C G, Putnam M A, Friebele E J. Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442–1463

    Article  Google Scholar 

  8. Xu M G, Archambault J L, Reekie L, Dakin J P. Thermallycompensated bending gauge using surface-mounted fiber gratings. International Journal of Optoelectron, 1994, 3(9): 281–283

    Article  Google Scholar 

  9. Dong X Y, Liu Y Q, Liu Z G, Dong X Y. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Optics Communications, 2001, 192(3–6): 213–217

    Article  Google Scholar 

  10. Patrick H J, Williams G M, Kersey A D, Pedrazzani J R, Vengsarkar A M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters, 1996, 8(9): 1223–1225

    Article  Google Scholar 

  11. Guan B O, Tam H Y, Tao X M, Dong X Y. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Letters, 2000, 12(6): 675–677

    Article  Google Scholar 

  12. Dong X Y, Yang X F, Zhao C L, Ding L, Shum P, Ngo N Q. A novel temperature-insensitive fiber Bragg grating sensor. Smart Materials and Structures, 2005, 14(2): N7–10

    Article  Google Scholar 

  13. Song M, Lee B, Lee S B, Choi S S. Interferometric temperatureinsensitive strain measurement with different-diameter fiber Bragg gratings. Optics Letters, 1997, 22(11): 790–792

    Article  Google Scholar 

  14. Frazao O, Carvalho J P, Ferreira L A, Marques L, Araujo F M, Santos J L. Discrimination of strain and temperature using Bragg grating in microstrctured and standard optical fibers. Measurement Science and Technology, 2005, 16(10): 2109–2113

    Article  Google Scholar 

  15. Chuang K C, Ma C C. Pointwise fiber Bragg grating displacement sensor system for dynamic measurements. Applied Optics, 2008, 47(20): 3561–3567

    Article  Google Scholar 

  16. Niewczas P, Dziuda L, Fusie G, McDonald J R. Temperature compensation for a piezoelectric fiber-optic voltage sensor. In: Proceedings of IMTC 2006 — Instrumentation and Measurement Technology Conference. 2006, 1994–1998

  17. Fusick G, Niewczas P, Dziuda L, McDonald J R. Hysteresis compensation for a piezoelectric fiber-optic voltage sensor. Optical Engineering, 2005, 44(11): 345–348

    Google Scholar 

  18. Liu B, Niu W, Yang Y, Luo J, Cao Y, Kai G, Zhang W, Dong X. A novel fiber Bragg grating accelerometer. Chinese Journal of Scientific Instrument, 2006, 27(1): 42–44 (in Chinese)

    Google Scholar 

  19. Bao H, Dong X, Shao L Y, Zhao C L, Chan C C, Shum P. Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings. IEEE Photonics Technology Letters, 2010, 22(12): 863–865

    Article  Google Scholar 

  20. Li HM, Gao HW, Liu B, Luo J H, Kai G Y, Yuan S Z, Dong X Y. A novel fiber Bragg grating flowmeter. Chinese Journal of Sensors and Actuators, 2006, 19(4): 1195–1197 (in Chinese)

    Google Scholar 

  21. Sato H, Watanabe K L. Experimental study on the use of a vortex whistle as a flowmeter. Instrumentation and Measurement, 2000, 49(1): 200–205

    Article  MathSciNet  Google Scholar 

  22. Lee K O, Chiang K S, Chen Z H. Temperature-insensitive fiber-Bragg-grating-based vibration sensor. Optical Engineering, 2001, 40(11): 2582–2585

    Article  Google Scholar 

  23. Takahashi N, Yoshimura K, Takahashi S. Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating. Japanese Journal of Applied Physics, 2000, 39: 3134–3138

    Article  Google Scholar 

  24. Zhang W G, Liu Y G, Kai G Y, Zhao Q D, Yuan S Z, Dong X Y. A novel independent tuning technology of center wavelength and bandwidth of fiber Bragg grating. Optics Communications, 2003, 216(4–6): 343–350

    Article  Google Scholar 

  25. Gwandu B A L, Zhang L, Chisholm K, Shu X, Bennion I. Compact FBG array structure for high spatial resolution distributed strain sensing. Measurement Science & Technology, 2001, 12(7): 918–921

    Google Scholar 

  26. Vohra S T, Todd M D, Johnson G A, Chang C C, Danver B A. Fiber Bragg grating sensor system for civil structure monitoring: applications and field tests. Proceedings of SPIE, 1999, 3746: 32–37

    Google Scholar 

  27. Henderson P J, Webb D J, Jackson D A, Zhang L, Bennion I. Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges. Proceedings of SPIE, 1999, 3746: 320–323

    Google Scholar 

  28. Weis R S, Kersey A D, Berkoff T A. A four-element fiber grating sensor array with phase-sensitive detection. IEEE Photonics Technology Letters, 1994, 6(12): 1469–1472

    Article  Google Scholar 

  29. Optical Fiber Sensor Technology. Vol. 2. London: Chapman & Hall, 1998, 355–389

  30. Andreas O, Kyriacos K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston, MA: Artech House, 1999

    Google Scholar 

  31. Ashoori R, Gebrmichal Y M, Xiao S, Kemp J, Grattan K T V, Palmer A W. Time domain multiplexing for Bragg grating strain measurement sensor network. Proceedings of SPIE, 1998, 3746: 308–311

    Google Scholar 

  32. Yao Y, Yi B S, Xiao J S. Research progress in wavelength demodulation technology of fiber Bragg grating sensors. Optical Communication Technology, 2007, 31(11): 41–45 (in Chinese)

    Google Scholar 

  33. Koo K P, Kersey A D. Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing. Journal of Lightwave Technology, 1995, 13(7): 1243–1249

    Article  Google Scholar 

  34. Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Optics Letters, 1993, 18(16): 1370–1372

    Article  Google Scholar 

  35. Kim H S, Yun S H, Kwang I K, Kim B Y. All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile. Optics Letters, 1997, 22(19): 1476–1478

    Article  Google Scholar 

  36. Ball G A, Morey W W, Cheo P K. Fiber laser source/analyzer for Bragg grating sensor array interrogation. Journal of Lightwave Technology, 1994, 12(4): 700–703

    Article  Google Scholar 

  37. Chen G, Xiao H, Huang Y, Zhang Y, Zhou Z. Simultaneous strain and temperature measurement using long-period fiber grating sensors. Proceedings of SPIE, 2010, 7649: 343–346

    Google Scholar 

  38. Kersey A D, Morey W W. Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation. Electronics Letters, 1993, 29(1): 112–114

    Article  Google Scholar 

  39. Yun S H, Richardson D J, Kim B Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Optics Letters, 1998, 23(11): 843–845

    Article  Google Scholar 

  40. Jáuregui C, Quintela A, López-Higuera J M. Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating. Optics Letters, 2004, 29(7): 676–678

    Article  Google Scholar 

  41. Xia H Y, Wang C, Sebastien B, Yao J P. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-totime mapping incorporating higher order dispersion. Journal of Lightwave Technology, 2010, 28(3): 224–261

    Google Scholar 

  42. Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Optics Express, 2008, 16(21): 16552–16560

    Google Scholar 

  43. Gagliardi G, Salza M, Ferraro P, De Natale P. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation. Optics Express, 2005, 13(7): 2377–2384

    Article  Google Scholar 

  44. Sano Y, Yoshino T. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors. Journal of Lightwave Technology, 2003, 21(1): 132–139

    Article  Google Scholar 

  45. Song M, Yin S, Ruffin P B. Fiber Bragg grating strain sensor demodulation with quadrature sampling of a mach-zehnder interferometer. Applied Optics, 2000, 39(7): 1106–1111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Liu, B. & Zhang, H. Review of fiber Bragg grating sensor technology. Front. Optoelectron. China 4, 204–212 (2011). https://doi.org/10.1007/s12200-011-0130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-011-0130-4

Keywords

Navigation