Skip to main content
Log in

The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices

  • 2021 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Connective tissue repair and mechanosensing are tightly entwined in vivo and occur within a complex three-dimensional (3D), fibrous extracellular matrix (ECM). Typically driven by activated fibroblasts, wound repair involves well-defined steps of cell spreading, migration, proliferation, and fibrous ECM deposition. While the role of Rho GTPases in regulating these processes has been explored extensively in two-dimensional cell culture models, much less is known about their role in more physiologic, 3D environments.

Methods

We employed a 3D, fibrous and protease-sensitive hydrogel model of interstitial ECM to study the interplay between Rho GTPases and fibrous matrix cues in fibroblasts during wound healing.

Results

Modulating fiber density within protease-sensitive hydrogels, we confirmed previous findings that heightened fiber density promotes fibroblast spreading and proliferation. The presence of matrix fibers furthermore corresponded to increased cell migration speeds and macroscopic hydrogel contraction arising from fibroblast generated forces. During fibroblast spreading, Rac1 and RhoA GTPase activity proved crucial for fiber-mediated cell spreading and contact guidance along matrix fibers, while Cdc42 was dispensable. In contrast, interplay between RhoA, Rac1, and Cdc42 contributed to fiber-mediated myofibroblast differentiation and matrix contraction over longer time scales.

Conclusion

These observations may provide insights into tissue repair processes in vivo and motivate the incorporation of cell-adhesive fibers within synthetic hydrogels for material-guided wound repair strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baker, B. M., et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 29:2348–2358, 2008.

    Article  Google Scholar 

  2. Balestrini, J. L., S. Chaudhry, V. Sarrazy, A. Koehler, and B. Hinz. The mechanical memory of lung myofibroblasts. Integr. Biol. 4:410–421, 2012.

    Article  Google Scholar 

  3. Barker, T. H., and A. J. Engler. The provisional matrix: setting the stage for tissue repair outcomes. Matrix Biol. 60–61:1–4, 2017. https://doi.org/10.1016/j.matbio.2017.04.003.

    Article  Google Scholar 

  4. Bellis, S. L. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 32:4205–4210, 2011. https://doi.org/10.1016/j.biomaterials.2011.02.029.

    Article  Google Scholar 

  5. Bochaton Piallat, M.-L., G. Gabbiani, and B. Hinz. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000 Res. 2016. https://doi.org/10.12688/f1000research.8190.1.

    Article  Google Scholar 

  6. Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:122–132, 2008.

    Article  Google Scholar 

  7. Castella, L. F., L. Buscemi, C. Godbout, J. J. Meister, and B. Hinz. A new lock-step mechanism of matrix remodelling based on subcellular contractile events. J. Cell Sci. 123:1751–1760, 2010.

    Article  Google Scholar 

  8. Choi, S. S., et al. Activation of Rac1 promotes hedgehog-mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology. 52:278–290, 2010.

    Article  Google Scholar 

  9. Coburn, J., et al. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct. Syst. 7:213–222, 2011.

    Article  Google Scholar 

  10. Cox, T. R., and J. T. Erler. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4:165–178, 2011.

    Article  Google Scholar 

  11. Darby, I., O. Skalli, and G. Gabbiani. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab. Investig. 63:21–29, 1990.

    Google Scholar 

  12. Darby, I. A., and T. D. Hewitson. Fibroblast differentiation in wound healing and fibrosis. Int. Rev. Cytol. 257:143–179, 2007.

    Article  Google Scholar 

  13. Davidson, C. D., et al. Myofibroblast activation in synthetic fibrous matrices composed of dextran vinyl sulfone. Acta Biomater. 105:78–86, 2020.

    Article  Google Scholar 

  14. Davidson, C. D., W. Y. Wang, I. Zaimi, D. K. P. Jayco, and B. M. Baker. Cell force-mediated matrix reorganization underlies multicellular network assembly. Sci. Rep. 2019. https://doi.org/10.1038/s41598-018-37044-1.

    Article  Google Scholar 

  15. Deroanne, C. F., et al. Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J. Cell Sci. 118:1173–1183, 2005.

    Article  Google Scholar 

  16. Edlund, S., M. Landström, C. H. Heldin, and P. Aspenström. Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell. 13:902–914, 2002.

    Article  Google Scholar 

  17. Fiore, V. F., et al. Integrin a v b 3 drives fibroblast contraction and strain stiffening of soft provisional extracellular matrix during progressive fibrosis. JCI Insight. 3:1–35, 2018.

    Article  Google Scholar 

  18. Follonier, L., S. Schaub, J.-J. Meister, and B. Hinz. Myofibroblast communication is controlled by intercellular mechanical coupling. J. Cell Sci. 121:3305–3316, 2008.

    Article  Google Scholar 

  19. Frantz, C., K. M. Stewart, and V. M. Weaver. The extracellular matrix at a glance. J. Cell Sci. 123:4195–4200, 2010. https://doi.org/10.1242/jcs.023820.

    Article  Google Scholar 

  20. Gabbiani, G., C. Chaponnier, and I. Huttner. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J. Cell Biol. 76:561–568, 1978.

    Article  Google Scholar 

  21. Ge, J., et al. RhoA, Rac1 and Cdc42 differentially regulate aSMA and collagen I expression in mesenchymal stem cells. J. Biol. Chem. 293(24):9358–9369, 2018.

    Article  Google Scholar 

  22. Ghajar, C. M., et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94:1930–1941, 2008.

    Article  Google Scholar 

  23. Griffin, D. R., W. M. Weaver, P. O. Scumpia, D. Di Carlo, and T. Segura. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14:737–744, 2015.

    Article  Google Scholar 

  24. Gunatillake, P. A., R. Adhikari, and N. Gadegaard. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5:1–16, 2003.

    Article  Google Scholar 

  25. Hassiba, A. J., et al. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine. 11:715–737, 2016.

    Article  Google Scholar 

  26. Hinz, B. The role of myofibroblasts in wound healing. Curr. Res. Transl. Med. 64:171–177, 2016. https://doi.org/10.1016/j.retram.2016.09.003.

    Article  Google Scholar 

  27. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Investig. Dermatol. 127:526–537, 2007. https://doi.org/10.1038/sj.jid.5700613.

    Article  Google Scholar 

  28. Hinz, B., and G. Gabbiani. Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb. Haemost. 90:993–1002, 2003.

    Article  Google Scholar 

  29. Hinz, B., C. A. Mcculloch, and N. M. Coelho. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp. Cell Res. 379:119–128, 2019. https://doi.org/10.1016/j.yexcr.2019.03.027.

    Article  Google Scholar 

  30. Huang, X., et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am. J. Respir. Cell Mol. Biol. 47:340–348, 2012.

    Article  Google Scholar 

  31. Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. Nat. Res. 15:802–812, 2014. https://doi.org/10.1038/nrm3896.

    Article  Google Scholar 

  32. Igata, T., et al. Up-regulated type I collagen expression by the inhibition of Rac1 signaling pathway in human dermal fibroblasts. Biochem. Biophys. Res. Commun. 393:101–105, 2010. https://doi.org/10.1016/j.bbrc.2010.01.090.

    Article  Google Scholar 

  33. Kendall, R. T., and C. A. Feghali-Bostwick. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5:123, 2014.

    Article  Google Scholar 

  34. Kim, S., M. Uroz, J. L. Bays, and C. S. Chen. Harnessing mechanobiology for tissue engineering. Dev. Cell. 56:180–191, 2021. https://doi.org/10.1016/j.devcel.2020.12.017.

    Article  Google Scholar 

  35. Klingberg, F., B. Hinz, and E. S. White. The myofibroblast matrix: implications for tissue repair andfibrosis. J. Pathol. 229:298–309, 2013.

    Article  Google Scholar 

  36. Leong, W. S., S. C. Wu, K. Ng, and L. P. Tan. Electrospun 3D multi-scale fibrous scaffold for enhanced human dermal fibroblast infiltration. Int. J. Bioprint. 2:81–92, 2016.

    Article  Google Scholar 

  37. Li, L., J. Eyckmans, and C. S. Chen. Designer biomaterials for mechanobiology. Nat. Mater. 16:1164–1168, 2017.

    Article  Google Scholar 

  38. Liang, C. C., A. Y. Park, and J. L. Guan. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2:329–333, 2007.

    Article  Google Scholar 

  39. Liu, S., et al. Role of Rac1 in a bleomycin-induced scleroderma model using fibroblast-specific Rac1-knockout mice. Arthritis Rheum. 58:2189–2195, 2008.

    Article  Google Scholar 

  40. Liu, S., M. Kapoor, and A. Leask. Rac1 expression by fibroblasts is required for tissue repair in vivo. Am. J. Pathol. 174:1847–1856, 2009. https://doi.org/10.2353/ajpath.2009.080779.

    Article  Google Scholar 

  41. Loebel, C., M. Y. Kwon, C. Wang, L. Han, R. L. Mauck, and J. A. Burdick. Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Adv. Funct. Mater. 1909802:1–10, 2020.

    Google Scholar 

  42. Matera, D. L., et al. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci. Adv. 6:1–15, 2020.

    Article  Google Scholar 

  43. Matera, D. L., W. Y. Wang, and B. M. Baker. New directions and dimensions for bioengineered models of fibrosis. Nat. Rev. Mater. 2021. https://doi.org/10.1038/s41578-021-00288-x.

    Article  Google Scholar 

  44. Matera, D. L., W. Y. Wang, M. R. Smith, A. Shikanov, and B. M. Baker. Fiber density modulates cell spreading in 3D interstitial matrix mimetics. ACS Biomater. Sci. Eng. 5:2965–2975, 2019.

    Article  Google Scholar 

  45. Nakagawa, S., P. Pawelek, and F. Grinnell. Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity. J. Investig. Dermatol. 93:792–798, 1989. https://doi.org/10.1111/1523-1747.ep12284425.

    Article  Google Scholar 

  46. Nobes, C. D. Rho GTPases and cell migration-fibroblast wound. Cell. 325:441–449, 2000.

    Google Scholar 

  47. O’Connor, J. W., and E. W. Gomez. Cell adhesion and shape regulate TGF-beta1-induced epithelial-myofibroblast transition via MRTF-A signaling. PLoS ONE. 8:1–11, 2013.

    Article  Google Scholar 

  48. Oh, R. S., A. J. Haak, K. M. J. Smith, and G. Ligresti. RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. J. Cell Sci. 131:jcs209932, 2018.

    Article  Google Scholar 

  49. Olczyk, P., Ł. Mencner, and K. Komosinska-Vassev. Diverse roles of Heparan Sulfate and Heparin in wound repair. Bio. Med. Res. Int. 1–7, 2015. https://doi.org/10.1155/2015/549417

  50. Ortega, S., M. Ittmann, S. H. Tsang, M. Ehrlich, and C. Basilico. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA. 95:5672–5677, 1998.

    Article  Google Scholar 

  51. Pathak, A., and S. Kumar. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol. 3:267–278, 2011.

    Article  Google Scholar 

  52. Pertz, O., L. Hodgson, R. L. Klemke, and K. M. Hahn. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 440:1069–1072, 2006.

    Article  Google Scholar 

  53. Pittet, P., K. Lee, A. J. Kulik, J.-J. Meister, and B. Hinz. Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J. Cell Sci. 121:877–886, 2008. https://doi.org/10.1242/jcs.024877.

    Article  Google Scholar 

  54. Pothula, S., H. E. P. Bazan, and G. Chandrasekher. Regulation of cdc42 expression and signaling is critical for promoting corneal epithelial wound healing. Investig. Ophthalmol. Vis. Sci. 54:5343–5352, 2013.

    Article  Google Scholar 

  55. Provenzano, P. P., K. W. Eliceiri, D. R. Inman, and P. J. Keely. Engineering three-dimensional collagen matrices to provide contact guidance during 3D cell migration. Curr. Protoc. Cell Biol. 1–11, 2010.

  56. Ravichandran, R., J. R. Venugopal, S. Sundarrajan, S. Mukherjee, R. Sridhar, and S. Ramakrishna. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology. 23:385102, 2012.

    Article  Google Scholar 

  57. Riching, K. M., et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107:2546–2558, 2015. https://doi.org/10.1016/j.bpj.2014.10.035.

    Article  Google Scholar 

  58. Ridley, A. J. Rho GTPases and cell migration. J. Cell Sci. 114:2713–2722, 2001.

    Article  Google Scholar 

  59. Russell, S. M., and G. Carta. Mesh size of charged polyacrylamide hydrogels from partitioning measurements. Ind. Eng. Chem. Res. 44:8213–8217, 2005.

    Article  Google Scholar 

  60. Sander, E. E., J. P. Ten Klooster, S. Van Delft, R. A. Van Der Kammen, and J. G. Collard. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147:1009–1021, 1999.

    Article  Google Scholar 

  61. Scharenberg, M. A., et al. TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. J. Cell Sci. 127:1079–1091, 2014.

    Google Scholar 

  62. Shi-wen, X., et al. Rac inhibition reverses the phenotype of fibrotic fibroblasts. PLoS ONE. 4:1–9, 2009.

    Article  Google Scholar 

  63. Shimizu, Y., et al. Contribution of small GTPase Rho and its target protein ROCK in a murine model of lung fibrosis. Am. J. Respir. Crit. Care Med. 163:210–217, 2001.

    Article  Google Scholar 

  64. Singer, A. J., and R. A. F. Clark. Cutaneous wound healing. N. Engl. J. Med. 341:738–746, 1999. https://doi.org/10.1056/NEJM199909023411006.

    Article  Google Scholar 

  65. Smithmyer, M. E., L. A. Sawicki, and A. M. Kloxin. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater. Sci. 2:634–650, 2014.

    Article  Google Scholar 

  66. Sukmana, I., and P. Vermette. Polymer fibers as contact guidance to orient microvascularization in a 3D environment. J. Biomed. Mater. Res. Part A. 92:1587–1597, 2010.

    Google Scholar 

  67. Tapon, N., and A. Hall. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9:86–92, 1997.

    Article  Google Scholar 

  68. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. Myofibroblasts and mechano: regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–363, 2002.

    Article  Google Scholar 

  69. Tschumperlin, D. J. Fibroblasts and the ground they walk on. Physiology. 28:380–390, 2013.

    Article  Google Scholar 

  70. Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80:353–387, 2018.

    Article  Google Scholar 

  71. Vyalov, S. L., G. Gabbiani, and Y. Kapanci. Rat alveolar myofibroblasts acquire??-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 143:1754–1765, 1993.

    Google Scholar 

  72. Walraven, M., and B. Hinz. Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer. Matrix Biol. 71–72:205–224, 2018. https://doi.org/10.1016/j.matbio.2018.02.020.

    Article  Google Scholar 

  73. Wang, W. Y., et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioeng. 2018. https://doi.org/10.1063/1.5052239.

    Article  Google Scholar 

  74. Wang, X., B. Ding, and B. Li. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today. 16:229–241, 2013. https://doi.org/10.1016/j.mattod.2013.06.005.

    Article  Google Scholar 

  75. Wells, A. U., and T. M. Maher. Update in interstitial lung disease 2016. Am. J. Respir. Crit. Care Med. 196:132–138, 2017.

    Article  Google Scholar 

  76. Wirtz, D. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell. 15:5318–5328, 2004.

    Google Scholar 

  77. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:199–210, 2008.

    Article  Google Scholar 

  78. Yamada, K. M., and M. Sixt. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 2019. https://doi.org/10.1038/s41580-019-0172-9.

    Article  Google Scholar 

  79. Yasui, T., R. Tanaka, E. Hase, S. Fukushima, and T. Araki. In vivo time-lapse imaging of skin burn wound healing using second-harmonic generation microscopy. Multiphot. Microsc. Biomed. Sci. XIV. 8948:89480B, 2014.

    Article  Google Scholar 

  80. Yee, H. F., A. C. Melton, and B. N. Tran. RhoA/Rho-associated kinase mediates fibroblast contractile force generation. Biochem. Biophys. Res. Commun. 280:1340–1345, 2001.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eric S. White (University of Michigan) for providing the human fibroblasts employed in these studies.

Author Contributions

D.L.M and B.M.B conceived the experiments, supervised the project, and wrote the manuscript. D.L.M. designed and performed the experiments. A.L. conducted data analysis for Figs. 2, 3 and 4. H.L.H created and aided in the use of a custom Matlab script for cell migration analysis. All authors edited and approved the manuscript.

Funding

This work was supported in part by the National Institutes of Health (HL124322, EB030474). DLM acknowledges financial support from the National Science Foundation Graduate Research Fellowship Program (DGE1256260).

Conflict of interest

D.L.M, A.T.L, H.L.H, and B.M.B declare that they have no conflicts of interest.

Data Availability

Datasets are available on request: the raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, by request.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendon M. Baker.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 3918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matera, D.L., Lee, A.T., Hiraki, H.L. et al. The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices. Cel. Mol. Bioeng. 14, 381–396 (2021). https://doi.org/10.1007/s12195-021-00698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00698-5

Keywords

Navigation